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ABSTRACT 
 

The objective of this project is to use solvophobic interactions to guide 

conformational changes of molecular containers constructed with cholic acid as a 

building block.  This dissertation describes 1) conformationally controllable amphiphilic 

molecules with solvent-responsiveness and/or photo-responsiveness, and their 

applications as supramolecular hosts and catalysts, 2) inclusion compounds of β-

aminocholic acid with high guest/host (=4/1) ratio, and 3) an efficient synthetic method 

to make multivalent water-soluble calixarenes with click chemistry.  

Amphiphilic “molecular baskets” with multiple facially amphiphilic cholates 

could aggregate intramolecularly to form a micelle-like conformer in polar solvents and a 

reversed-micelle-like one in nonpolar solvents.  The stability of the reversed micelle-like 

conformers were influenced by the preorganization of the scaffold, the difference in 

solvophobicity between the α and the β faces of the cholate, and the spacers between the 

cholates and the scaffold.  Microphase-separation of solvents was found to occur within 

the baskets. The environmentally responsive baskets could act as a novel supramolecular 

host to bind hydrophilic guests in nonpolar solvent mixtures and hydrophobic guests in 

polar solvents. Solvent-responsiveness could be easily coupled with photo-

responsiveness by the introduction of azobenzene-spacers.  A porphyrin could be used as 

the scaffold as well.  Binding studies of the basket with the Zn-porphyrin scaffold 

indicated that the conformational change could be utilized to tune the substrate-selectivity 

of the metalloporphyrin. The basket with a Fe-porphyrin scaffold could act as a solvent-

tunable supramolecular catalyst.  
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Bile acids such as cholic acid are well known to include a wide variety of organic 

compounds in their crystal lattices.  3β-Amino cholic acid was found to include with a 

high guest/host (=4/1) ratio into the solid state, because of the charge-assisted hydrogen 

bonds between the amino and the carboxyl group.  

Despite broad interest in water-soluble calixarenes as multivalent ligands, their 

synthesis represents a challenge because many reactions to introduce water-soluble 

groups have poor functional-group tolerance.  Via the high-yielding [3+2] cycloaddition 

between an azide and an alkyne (i.e., a click reaction), water-soluble calixarenes carrying 

cationic, anionic, and nonionic groups were synthesized.  Cationic and anionic 

calixarenes were fully soluble in water and their aggregation was investigated by 1H 

NMR spectroscopy.  
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CHAPTER 1. General introduction 
 

Dissertation organization 

This dissertation is divided into eight chapters.  The current chapter is a review of 

environmentally responsive molecules, including naturally occurring antimicrobial 

peptides and synthetic analogues, such as foldamers.  Chapter 2 was published in 

Organic Letters in 2004.1  Four facially amphiphilic cholate units were assembled on a 

cone-shaped calix[4]arene scaffold. The resulting “molecular baskets” could turn either 

the hydrophilic faces or the hydrophobic faces of the cholates outward, depending on the 

solvent polarity.  The two conformers resemble unimolecular micelles and reversed 

micelles, respectively.  Chapter 3 was taken from a paper published in The Journal of 

Organic Chemistry in 2006.2,3  Several amphiphilic baskets were synthesized and their 

formation of the reversed micelle-like conformer was studied with 1H NMR 

spectroscopy.  In a solvent mixture consisting of mostly a nonpolar solvent and a small 

amount of polar solvent, the microphase-separation of solvents occurred within the 

baskets, causing the polar solvent to be concentrated from the bulk to the interior of the 

baskets.  Chapter 4 was published in The Journal of Organic Chemistry in 2005.4  

Molecular baskets have been demonstrated to act as tunable supramolecular baskets, 

binding hydrophilic guests in nonpolar solvent mixtures and hydrophobic guests in polar 

solvents.  Chapter 5 was accepted by The Journal of Organic Chemistry in 2006.5  A 

cholate-derived conformational change have been combined with the trans-cis 

isomerization of azobenzene to create a molecular basket sensitive to both solvent 

polarity and UV irradiation.  Chapter 6 was taken from a paper accepted by 
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Organometallics in 2006.6  Eight cholate units were attached to a tetraphenylporphyrin. 

With the solvent-dependent intramolecular aggregation of cholates, local 

microenvironments were generated above and below the surface of the metal center.  

Because these microenvironments could be formed and destroyed by solvent changes, the 

resulting metal porphyrin could change its selectivity toward hydrophilic or hydrophobic 

substrates, depending on the solvent polarity.  Chapter 7 was published in Tetraheron in 

2006.7 3β-Aminocholic acid was found to include a large number of methanol molecules 

in the solid state.  The guest/host (= 4/1) ratio was higher than all previously prepared 

inclusion compounds of bile acids.  Dr. Allen helped solve the single crystal structure by 

X-ray single crystal crystallography.  Chapter 8 was published in Organic Letters in 

2005.8  Despite broad interest in water-soluble calixarenes as multivalent ligands, their 

synthesis represents a challenge because introduction of water-soluble groups (e.g., via 

sulfonation) often has poor functional-group tolerance.  Calixarenes carrying cationic, 

anionic, and nonionic groups were synthesized through a high-yielding [3+2] 

cycoladdition between an azide and an alkyne (i.e., a click reaction).  

 

Environmentally responsive amphiphilic molecules 

Environmentally responsive molecules are ubiquitous in nature. Many 

biomolecules, including proteins and DNA, can respond to environmental stimuli by 

changing their conformations.  Antimicrobial peptides are one class of such 

environmentally responsive amphiphilic biomolecules.9  These relatively short peptides 

(6-50 residues) are generated in living organisms.  They can kill bacteria by destroying 

their membranes, but show low toxicity towards mammalian cells.  They tend to have 



www.manaraa.com

 3

both cationic and hydrophobic amino acid residues in their backbones.  Their ability to 

adopt different conformations in aqueous solution and on membranes is critical to their 

biological activity.  Several mechanisms have been proposed to explain their 

antimicrobial properties.  In the “barrel-stave” model, the peptides first bind with the 

membrane in a parallel orientation, interacting with the anionic hydrophilic face of the 

bilayer.  The peptides then change from a random conformation to ordered 

conformations, such as α-helices or β-sheets.  Because their interactions with bacterial 

membranes do not involve any specific receptors, antimicrobial peptides are not subject 

to bacterial resistence, a feature that has attracted great interest by many researchers. 

These environmentally dependent conformational changes have inspired chemists 

to develop synthetic analogues with similar properties.  Foldamers are synthetic mimics 

of responsive biomolecules.  They are linear oligomers that can adopt compact, ordered 

conformations.10–12  The folded conformations can be stabilized by a variety of 

noncovalent forces, such as hydrogen bonds, metal-ligand complexation, π−π 

interactions, van der Waals forces, and/or solvophobic interactions.  Many researchers 

choose to fold the foldamer chain by directional forces (e.g. hydrogen bonds).  The β-

peptides (1, 2) reported by Gellman and co-workers are good examples.13  Their folded 

conformations are stabilized by amide hydrogen bonds, in a way similar to the α-helices 

in natural peptides.  

It is challenging to use nondirectional forces, such as solvophobic interactions to 

control the conformations of foldamers.  Moore and colleagues reported m-phenylene 

ethylene (mPE) foldamers that successfully overcame this difficulty.10  In a solvent (e.g. 

chloroform) that strongly solvates the aromatic backbone, the foldamer assumed 
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extended, random conformations.  In a solvent (e.g. acetonitrile) that is a poor solvent for 

the mPE backbone, the foldamer collapsed into a helical conformation, with the aromatic 

units stacking over one another with the tri(ethylene glycol) units on the periphery of the 

aromatic core.  In their design, a critical feature is the meta-substituted benzene.  The 

semirigid monomer unit, by its fixed 120° angle, restricts the movement of the chain.  It 

not only simplies the conformational control problem, but also preorganizes the chain to 

fold in the designed fashion.  Rigid linkers, however, do not always need to be used to 

fold solvophobic foldamers. Iverson and co-workers reported foldamers (i.e. aedamers) 

with alternating electron-rich (donor) and electron-deficient (acceptor) aromatic units.14  

The donor-acceptor interactions are preferred over either the donor-donor or the acceptor-

acceptor interactions.  This “polarization” of the aromatic solvophobes was used to guide 

the folding of the aedamers.  

It is difficult to use aliphatic solvophobes to construct foldamers.  Unlike aromatic 

groups, aliphatic solvophobes (e.g. a hydrocarbon chain) are flexible.  As a result, their 

aggregation generally does not have a preferred orientation as aromatic solvophobes do.  

Because of the flexibility, it is also difficult to arrange solvophobic and solvophilic 

groups in precise directions on an aliphatic solvophobes.  Zhao and co-workers recently 

overcame these challenges and synthesized amphiphilic foldamers based on aliphatic 

cholates.3,15  The foldamers adopted helical structures in nonpolar solvents with a small 

amount of polar solvent.  A highly unusual feature of the folded helix was the “hollow” 

hydrophilic interior, about 1 nm in diameter.  The interior can be used as a binding pocket 

useful for molecular recognition or supramolecular catalysis. 
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Despite the great interest in creating linear, oligomeric mimics (i.e. foldamers) of 

responsive biomolecules, some researchers have also designed nonfoldamers that showed 

responsiveness to external stimuli.  Regan’s molecular umbrella was constructed with 

two (or more) facially amphiphilic units and a “stem” that could be a drug molecule.16  If 

the environment has polarity similar to that of the stem, the stem will be exposed.  On the 

other hand, if the environment and the stem have opposite polarities, the facial 

amphiphiles will sandwich the stem and shield it from the environment.  The molecules 

have been demonstrated to be effective at transporting hydrophilic agents across 

hydrophobic lipid bilayers. 16d,16e   

Chemists have just begun to design molecules that can respond to environmental 

stimuli in predictable manners.  Conformational control is the underlying strategy in 

many of the reported responsive molecules.  As chemists develop better ways to control 

the conformations of synthetic molecules, they will be able to not only develop a better 

understanding of how biomolecules fold and function, but also create “smart” materials 

with biomolecule-like properties.  
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CHAPTER 2. Environmentally responsive molecular baskets: 
unimolecular mimics of both micelles and reversed micelles 

 
A paper published in Organic Letters 2004, 6, 3187-3189.1

 

Abstracts 

When four facially amphiphilic cholate derivatives were attached to a 

tetraaminocalixarene scaffold, the resulting molecule responded to environmental changes by 

rotation of the cholate units.  In polar solvents, the molecule adopted a micelle-like 

conformation with the hydrophilic α faces of the cholates pointing outward.  In nonpolar 

solvents, it turned inside out, assuming a reversed micelle-like conformation with the 

hydrophobic β-faces pointing outward.  Switching between the two conformations was driven 

by solvophobic interactions and was fully reversible. 

 

Introduction 

Many peptides and proteins have distinct water-soluble and membrane-bound states.2  

Their ability to adopt radically different conformations in different environments is critical to 

their functions.  Despite much attention to novel amphiphiles in recent years,3 very few 

amphiphilic molecules have been reported to display well-defined conformational changes 

according to environmental stimuli.4  We now describe amphiphiles that adopt conformations 

mimicking normal micelles in polar solvents and reversed micelles in nonpolar ones.  

Previously reported unimolecular micelles (and reversed micelles) are mostly dendrimers with 

a hydrophilic exterior and a hydrophobic core (and vice versa for reversed micelles).7  
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Interchange between the two states is usually prohibited by the fixed arrangement of 

hydrophilic and hydrophobic moieties. 

Cholic acid (1) has an unusual distribution of functional groups: the α face is 

hydrophilic with three hydroxyl groups and the β face is hydrophobic consisting of only 

hydrocarbons.  Because of its unique structure and commercial availability, cholic acid is a 

popular building block in supramolecular chemistry.8  In recent years, it has been used to 

construct environmentally responsive molecules.9–11  Taking advantage of the facial 

amphiphilicity of cholates,12 we  prepared molecular baskets that undergo transitions between 

micelle-like and reversed-micelle-like conformations induced by solvent changes13 and cholate 

foldamers with nanometer-sized hydrophilic cavities.14  

OHOH
OH

O

OH

α-face

β-face

H H
OH

OH

HO H

O

OH

1

3 7

12

 

 

Results and discussion  

For the basic design, we use cholic acid derivatives as the “walls” and a cone-shaped 

tetraaminocalixarene as the scaffold.15  The ethoxylethyl groups on the lower rim of calixarene 

are used for compatibility with both hydrophilic and hydrophobic solvents.  Cholic acid is an 

example of so-called facial amphiphiles.16  Its α-face is hydrophilic with three hydroxyl groups, 
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whereas the β-face is completely hydrophobic, being all hydrocarbon.  Bearing four cholic acid 

units, molecule 1a has a total of 12 hydroxyl groups on the hydrophilic faces, and 1b has 24. 

1a, R = H
1b, R = CH2CH(OH)CH2OH

O OO O

NH NH HN NH

O O O O

RO
RO

RO

O

RO
RO

RO

O

OR

OR

OR

O

OR

OR

OR

O

OH

OH

OH

O
HN

H3CO OCH3

OCH3

2

 

 

We have studied the conformational behavior of 1a and 1b in a mixture of (deuterated) 

chloroform and methanol.  We postulated that the nonpolar chloroform would favor the α-faces 

of the amphiphiles and the polar methanol would prefer the β-faces.  Miscibility of the two 

solvents allows us to vary the solvent ratios continuously.  In the 1H NMR spectra of 1a in 

different solvent mixtures (Figure 1), the most noticeable change occurs in the aromatic region.  

The aromatic protons are equivalent in 60% methanol.  However, with either a higher or lower 

percentage of methanol, the two aromatic protons ortho to the amido groups split into two 

peaks.  The two peaks have the same intensity and are coupled by a small coupling constant of 

2.4 Hz, which is in the typical range of coupling constants for two meta protons on a phenyl 

ring.17  Because secondary aromatic amides are known to adopt a trans conformation,18 we 

assume that the splitting is a result of hindered rotation of the nitrogen-aryl bonds (vide infra).  

In contrast, the 1H NMR spectrum of the control compound 2 is completely unchanged in 

different solvents (Figure 2). 
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Methanol : Chloroform
         100 : 0

* *

90 : 10 * *

80 : 20 * *

70 : 30 * *

60 : 40 * *

50 : 50 * *

40 : 60 * *

30 : 70 * *

0.01.02.03.04.05.06.07.0

20 : 80 * *

 

Figure 1. 1H NMR spectra (300 MHz) of 1a in different ratios of CD3OD/CDCl3 (v/v) at 

ambient temperature.  The 20%/80% mixture also contains an additional 1% of D2O.  Solvent 

peaks (CD3OH and CD2HOD) are marked with * on the right.  The signal at 0 ppm is from 

added tetramethylsilane (TMS). 

 

The two aromatic peaks coalesce at higher temperatures.  In 65% methanol, the 

coalescence temperature (tc) is 50 °C.  The rotation barrier is calculated12 to be ∆G‡ = 17.0 

kcal/mol with a ∆ν = 8.8 Hz.  The barrier increases to ∆G‡ = 17.7 kcal/mol (tc = 70 °C, ∆ν = 

15.6 Hz) in 70% methanol, and further to ∆G‡ > 17.9 kcal/mol (tc > 80 °C, ∆ν = 28.0 Hz) in 

75% methanol.20  Upon cooling, the singlet in 60% methanol splits into two peaks.  The 

rotational barrier is ∆G‡ = 13.8 kcal/mol (tc = 0 °C, ∆ν = 15.6 Hz at -40 °C).  Clearly, the 

distance between the two aromatic peaks at ambient temperature is a measure of the rotational 

barrier around the nitrogen-aryl bonds (Figure 3). 
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MeOH : Chloroform
    100 : 0 *

*

*
*60 : 40

*

0.000.501.001.502.002.503.003.504.004.505.005.506.006.507.00

40 : 60 *

*

 

Figure 2. 1H NMR spectra (300 MHz) of 2 in different ratios of CD3OD/CDCl3.  Solvent peaks 

(CD3OH and CD2HOD) are marked with * on the right.  The signal at 0 ppm is from added 

tetramethylsilane (TMS). 

 

The splitting of the ortho aromatic protons has been found in other amido calixarenes 

and typically caused by hydrogen bonds that hindered rotation of the nitrogen-aryl bonds.21  

Hydrogen bonds, however, are unlikely to be responsible in the current system.  This is because 

rotation is most hindered when the percentage of methanol (which is a competitive hydrogen 

bonding solvent) is either high or low, but least hindered in the intermediate range.  

 

65°C

60°C

55°C

50°C

(a)

45°C

30°C

25°C

6.5506.6006.6506.7006.7506.8006.8506.9006.9507.0007.0507.1007.150

20°C

    

70°C
(b)

65°C

60°C

55°C

45°C

35°C

6.406.506.606.706.806.907.007.107.207.30

25°C
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80°C

75°C

70°C

65°C

(c)

6.5506.6006.6506.7006.7506.8006.8506.9006.9507.0007.0507.1007.1507.2007.250

20°C

    

20°C
(d)

10°C

0°C

-10°C

-30°C

ppm (t1) 6.706.806.907.007.10

-40°C

        

Figure 3. Variable temperature NMR spectra (400 MHz) of 1a in different ratios of 

CD3OD/CDCl3: (a) 65% CD3OD/45% CDCl3; (b) 70% CD3OD/30% CDCl3; (c) 75% 

CD3OD/25% CDCl3   (d) 60% CD3OD/40% CDCl3. 

 

We propose that 1a adopts a normal micelle conformation in polar solvents (>60% 

methanol) and a reversed micelle conformation in nonpolar solvents (<60% methanol).  It 

seems that there is no preference for either face of the cholic acid in 60% methanol and rotation 

of the nitrogen-aryl bonds is thus the least restricted.  In a methanol-rich environment, the 

solvent prefers the α-faces, causing the hydrophobic β-faces to aggregate intramolecularly.22  

Solvophobic interactions probably constrain the cholate units and result in hindered rotation.  

As the ratio of methanol increases, the micelle-resembling conformer becomes more favorable 

compared to other conformers with exposed hydrophobic β-faces.  Indeed, a progressively 

larger splitting is seen as methanol is increased from 60 to 100%.  Note that our variable 

temperature NMR spectra data also suggest that a larger splitting at ambient temperature 

corresponds to a higher rotational barrier. 

The exact opposite trend is observed when the percentage of methanol drops below 

60%. This can be explained by solvophobic interactions in the context of reversed micelles.  

Molecule 1a is not soluble in chloroform with less than 20% methanol.  A small amount of 
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water (ca. 1%), however, can significantly increase the solubility.23  Such behavior is typical for 

reversed micelles formed by regular surfactants, which require a small amount of water for 

stability.24  

Changes in other areas of the spectra in general are relatively small.  Toward the low-

polarity end, signals from the calixarene protons, including those from the ethoxyethyl groups 

(i.e. a triplet at 1.2 ppm and a quartet at 3.6 ppm) become quite broad.  The peak broadening is 

likely caused by intermolecular aggregation.  However, if carbon tetrachloride, instead of 

chloroform, is used in the solvent mixtures, the signals become much sharper (Figure 4).  This 

behavior is consistent with a reversed-micelle-like conformer, which should be more stable in 

carbon tetrachloride than the more polar chloroform.  A more stable conformer has its 

solvophobic faces better shielded from the solvent and thus has a lower tendency for 

aggregation.  Besides the sharpness of the signals, two other pieces of evidence support the 

hyprthesis that carbon tetrachloride is a better solvent than chloroform for the reversed-micelle 

conformer.  First, at the low-polarity end, splitting between the aromatic protons is larger in 

methanol/carbon tetrachloride mixtures than in methanol/chloroform mixtures: 0.098 ppm in 

40/60 mixture of CD3OD/CCl4 vs. 0.074 in CD3OD/CDCl3; 0.156 ppm in 30/70 mixture of 

CD3OD/CCl4 vs. 0.135 ppm in CD3OD/CDCl3.  Second, molecule 1a has greater solubility in 

methanol/carbon tetrachloride than in methanol/chloroform. Only 5% methanol is needed in the 

former mixture to solubilize 1a, whereas > 20% methanol is required in the latter.   
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Methanol : CCl4 **
90 : 10

80:20
**

70:30
**

60:40 **

50:50 **

40:60 **

30:70 **

20:80 **

0.000.501.001.502.002.503.003.504.004.505.005.506.006.507.007.50

10:90 *
*

 

Figure 4. 1H NMR spectra (300 MHz) of 1a in different ratios of CD3OD/CCl4.  Solvent peaks 

(CD3OH and CD2HOD) are marked with * on the right. 

 

A similar splitting of aromatic protons is found for 1b in methanol/chloroform mixtures 

(Figure 5).  Importantly, 1b shows consistently higher sensitivity toward solvent changes than 

1a.  When the difference in the chemical shifts of the ortho aromatic protons is plotted as a 

function of solvent ratios (Figure 6a), 1b gives a similar, but steeper, curve than 1a.  This is 

probably due to the larger difference between the solvophobicities of the α- and the β-faces in 

1b than in 1a.  Quite interestingly, the sensitivity enhancement is largest toward the ends of the 

polarity scales, but smallest in the middle, which is again in agreement with the solvophobic 

mechanism.  
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Methanol : Chloroform
         100 : 0

* *

90 : 10
* *

80 : 20 * *

70 : 30 * *

60 : 40 * *

50 : 50 * *

0.501.001.502.002.503.003.504.004.505.005.506.006.507.00

40 : 60
* *

 

Figure 5. 1H NMR spectra (300 MHz) of 1b in different ratios of CD3OD/CDCl3.  Solvent 

peaks (CD3OH and CD2HOD) are marked with * on the right. 

 

Further evidence for the solvophobically driven conformational change comes from the 

effect of water in the solvent mixture.  The amphiphiles are assumed to adopt normal micelle 

structures in methanol (vide supra).  The addition of water increases the polarity of the 

environment and is anticipated to further stabilize the micelle conformation.  In fact, the 

distance between the ortho aromatic protons continues to enlarge with a higher percentage of 

water (Figure 6b).  Molecule 1a reaches solubility limits after the addition of 20% water.  With 

increased hydrophilicity, 1b stays soluble in a nearly 1:1 mixture of CD3OD and D2O with a 

splitting of 0.56 ppm between the two aromatic protons. 
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Figure 6.  Chemical shift difference (∆δ) of the ortho aromatic protons as a function of solvent 

composition for 1a (■) and 1b (▲) (a) in a mixture of (deuterated) methanol and chloroform 

and (b) in a mixture of (deuterated) water and methanol.  

 

Conclusions 

In summary, we have designed and synthesized amphiphiles that have basketlike 

structures.  The amphiphiles respond to solvent changes to act like unimolecular micelles in 

polar environments and unimolecular reversed micelles in nonpolar environments.  Switching 

between the two conformations is driven by solvophobic interactions and is fully reversible.  

Potential applications of these novel amphiphiles include colloid stabilization, catalysis, and 

solubilization and transport of agents through incompatible phases. 

 

Experimental Section 

General methods 

Anhydrous tetrahydrofuran (THF) and methylene chloride were dried by passage 

through a column of activated alumina under compressed nitrogen.  Cholic acid was 
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crystallized from 95% ethanol.  All other reagents and solvents were of A. C. S. certified grade 

or higher, and were used as received from commercial suppliers.  All glassware and syringes 

were dried in an oven at least overnight prior to use.  Routine 1H and 13C NMR spectra were 

recorded on a Varian VXR-300, VXR-400, or Bruker-400 spectrometer.  Elemental analyses 

are obtained on a Perkin-Elmer model 2400 series 2 CHN/S elemental analyzer.  MALDI-TOF 

masses are recorded on a Thermobioanalysis Dynamo mass spectrometer. 

 

1a, R = H
1b, R = CH2CH(OH)CH2OH
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Synthesis 

Compound 3. The aminocalixarene 3 was synthesized according to a literature 

procedure.26  1H NMR (300 MHz, CDCl3,δ) 6.08 (s, 8H), 4.34 (d, J = 13.2 Hz, 4H), 3.98 (t, J = 

6.0 Hz, 8H), 3.79 (t, J = 6.0 Hz, 8H), 3.79 (t, J = 6.0 Hz, 8H), 3.53 (q, J = 6.9 Hz, 8H), 2.91 (d, 

J = 13.2 Hz, 4H), 2.34 (b, 8H), 1.19 (t, J = 6.9 Hz, 12H). 

 

Scheme 1. Preparation of compound 1b 
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Reaction conditions: (a) Allyl iodide, Bu4NI, NaH; (b) MeOH, H2SO4; (c) mCPBA; (d) H2O, 

KOH; (e) Ac2O, pyridine, DMAP; (f) oxalyl chloride, pyridine; (g) 3, NEt3; h) NaOMe, MeOH. 

 

Compound 1a. A mixture of cholic acid (195 mg, 0.48 mmol), 3 (74 mg, 0.10 mmol), 

and N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide (EDCI) hydrogen chloride salt (109 mg, 

0.57 mmol) were stirred in anhydrous CH2Cl2 (5 mL) at room temperature under N2 for 24 h.  

Solvent was evaporated in vacuo.  The residue was dissolved in methanol (0.5 mL) and 

precipitated in water (5 mL).  The product was purified by column chromatography over silica 

gel using MeOH/CH2Cl2/acetone(1/5/1) as the eluent to give a light yellow powder (155 mg, 70 

% yield).  1H NMR (MeOH-d4, 300 MHz, δ) 7.00 (d, J = 2.4 Hz, 4H), 6.84 (d, J = 2.4 Hz, 4H), 

4.54 (d, J = 12.6 Hz, 4H), 4.12 (t, J = 5.7 Hz, 8H), 3.96 (s, 4H), 3.90 (t, J = 5.4 Hz, 8H), 3.80 

(s, 4H), 2.40-0.90 (m, 148H), 0.72 (s, 12H); 13C NMR (MeOH-d4, 75 MHz, δ) 173.38, 152.81, 

134.98, 132.97, 120.86, 73.78, 73.69, 73.57, 72.90, 72.80, 71.75, 71.67, 69.83, 67.93, 66.32, 

46.41, 44.38, 42.02, 41.83, 39.87, 39.30, 38.09, 36.25, 35.99, 35.60, 35.44, 35.36, 34.82, 33.97, 

32.03, 31.11, 30.75, 30.07, 28.50, 27.94, 27.69, 27.61, 26.70, 23.23, 23.18, 22.30, 16.95, 16.61, 
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14.80, 12.23, 12.06.  MALDI-TOFMS: calcd. for C140H212N4O24Na [M+Na]+: 2358.2; found: 

2358.3. 

Compound 4.  Cholic acid (2.1 g, 5.16 mmol) was dissolved in anhydrous THF (25 

mL).  Under N2, allyl iodide (3.8 mL, 41.60 mmol) was added by a syringe.  The first batch of 

NaH (0.43 g, 11.20 mmol) was added under a N2 flush and the mixture was stirred at 40 °C for 

12 h.  The second batch of NaH (0.44 g, 11.40 mmol) was added and the reaction was 

continued for 12 h.  The third (0.44 g, 11.40 mmol) and the fourth (0.44g, 11.40 mmol) were 

added similarly.  Reaction was quenched by slow addition of water (2 mL) and then acidified 

with 1M H2SO4 until pH = 3.  It was extracted with ethyl ether (2 x 30 mL).  The organic phase 

was washed with brine (2 x 20 mL), dried with MgSO4, and concentrated in vacuo.  The 

residue was combined with methanol (40 mL) and 5 drops of conc. H2SO4, and was heated to 

reflux for 24 h.  Water (40 mL) was added and the mixture was extracted with hexane (50, 30, 

and 30 mL).  The combined hexane solution was dried (MgSO4), filtered, and concentrated in 

vacuo.  The residue was purified by column chromatography using EtOAc/hexane (1/5) as the 

eluent to give colorless oil (1.96 g, 70% yield).  1H NMR (CDCl3, 300 MHz, δ) 5.90 (m, 3H), 

5.25 (m, 3H), 5.08 (m, 3H), 4.07 (m, 2H), 3.98 (d of t, 2H), 3.75 (m, 2H), 3.64 (s, 3H), 3.52 (br 

s, 1H), 3.324 (broad s, 1H), 3.12 (m, 1H), 2.32-0.92 (m, 30H), 0.70 (s, 3H); 13C NMR (CDCl3, 

75 MHz, δ) 174.18, 174.16, 135.48, 135.44, 115.69, 115.09, 115.05, 80.28, 78.67, 74.44, 68.88, 

68.82, 68.31, 45.95, 45.66, 42.20, 41.61, 35.01, 34.81, 34.64, 34.59, 30.63, 30.47, 28.47, 27.60, 

27.08, 22.80, 22.60, 17.06, 12.16; MS (EI) m/z 525 (M+-vinyl, 3), 442 (15), 441 (81), 440 (54), 

439 (22), 437 (11), 384 (18), 383 (100), 381 (73), 311 (22), 310 (10), 254 (22), 253 (55), 252 

(27), 226 (17), 225 (11), 211 (15), 160 (10), 158 (11), 157 (10), 147 (16), 145 (33), 131 (16).      
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Compound 5.  Compound 4 (2.0 g, 3.76 mmol) was dissolved in anhydrous CH2Cl2 (30 

mL).  m-Chloroperbenzoic acid (3.2 g, 18.80 mmol) was added and the solution was stirred at 

room temperature overnight.  The solvent was removed in vacuo.  Water (30 mL) was added 

and the mixture was extracted with ether (2 x 30 mL).  The combined organic solution was 

washed with brine (20 mL), dried (MgSO4), filtered, and concentrated in vacuo.  The residue 

was purified by column chromatography over silica gel using CH2Cl2/acetone (10/1) as the 

eluent to afford viscous oil (1.80 g, 75 % yield).  1H NMR (CDCl3, 300 MHz, δ) 3.69-3.24 (m, 

6H), 3.18-3.05 (m, 9H), 2.78-2.51 (m, 6H), 2.49-0.84 (m, 30H), 0.63-0.60 (m, 3H); 13C NMR 

(CDCl3, 75 MHz, δ) 81.85, 81.80, 80.30, 76.81, 76.10, 69.86, 69.81, 68.98, 68.93, 68.91, 68.76, 

68.65, 53.73, 51.67, 51.50, 51.46, 51.45, 51.36, 51.28, 46.58, 46.22, 46.20, 45.35, 45.15, 45.10, 

45.06, 44.92, 44.85, 42.87, 42.78, 41.96, 39.81, 39.78, 35.35, 35.31, 35.24, 35.09, 35.06, 35.05, 

34.86, 31.17, 31.08, 31.01, 30.97, 28.18, 27.66, 23.67, 23.34, 23.09, 17.56, 12.66, 12.64.  Anal. 

Calcd for C34H54O8: C, 69.12; H, 9.21. Found: C, 69.18; H, 9.32.  

Compound 6.  Coumpound 5 (1.0 g, 1.69 mmol), KOH (0.19 g, 3.38 mmol), and water 

(10 mL) were heated to 90 °C with rapid stirring for 4 h.  The brown solution was acidified 

with H2SO4 (2N) until pH = 3.  The solution was lyophilized to give an off-white powder.  The 

powder was combined with pyridine (5 mL).  4-(Dimethylamino)pyridine (10 mg) and acetic 

anhydride (6 mL) were added to the cooled (0 °C) suspension.  The mixture was stirred at room 

temperature overnight.  The solvent was removed in vacuo.  Water (40 mL) and CH2Cl2 (20 

mL) were added.  The aqueous layer was extracted with CH2Cl2 (2 x 40 mL).  The combined 

organic solution was dried (MgSO4), filtered, and concentrated in vacuo.  The residue was 

purified by column chromatography over silica gel using EtOAc/hexane (3/1) as the eluent to 

give yellow oil (0.45 g, 30 % yield).  1H NMR (CDCl3, 300 MHz, δ) 5.11-5.07 (m, 3H), 4.48-
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4.41 (m, 6H), 3.67-3.46 (m, 5H), 3.27-3.24 (m, 3H), 3.02 (s, 1H), 2.48-0.83 (m, 48H), 0.61 (s, 

3H); 13C NMR (CDCl3, 75 MHz, δ) 174.48, 170.46, 170.41, 170.37, 170.36, 170.31, 170.24, 

170.23, 170.19, 170.16, 80.41, 80.06, 76.56, 76.46, 70.83, 70.73, 70.62, 67.01, 66.81, 66.21, 

66.11, 66.02, 65.88, 63.03, 53.77, 51.37, 46.36, 36.35, 46.21, 46.19, 42.45, 42.39, 42.30, 41.81, 

41.64, 39.57, 35.12, 34.97, 34.87, 34.82, 34.80, 31.01, 30.79, 28.92, 28.74, 27.66, 27.41, 27.03, 

23.21, 22.83, 22.55, 21.01, 20.95, 20.92, 20.88, 20.76, 20.69, 20.68, 20.60, 17.50, 17.41, 17.38, 

12.31. Anal. Calcd for C45H70O17: C, 61.21; H, 7.99. Found: C, 60.99; H, 7.35. 

Compound 1b.  Compound 6 (350 mg, 0.40 mmol) was dissolved in anhydrous CH2Cl2 

(10 mL).  Under N2, oxalyl chloride (67 mg, 0.53 mmol) was added by a syringe, followed by 

three drops of pyridine.  The mixture was refluxed for 6 h.  The solvent was evaporated in 

vacuo.  The residue was redissolved in anhydrous CH2Cl2 (10 mL).  A solution of 3 (66 mg, 

0.09 mmol) and triethylamine (44 mg, 0.44 mmol) in anhydrous CH2Cl2 (5 ml) was added 

slowly via a syringe.  The mixture was stirred for 6 h at room temperature.  The mixture was 

acidified with 2N HCl and was extracted with CH2Cl2 (3 x 10 mL).  The combined organic 

solution was washed with water (10 mL) and brine (10 mL), dried with MgSO4, filtered, and 

concentrated in vacuo.  The residue was purified with column chromatography over silica gel 

using CH2Cl2/acetone (4/1) as an eluent to give a yellow powder.  The intermediate was 

hydrolyzed by NaOMe (170 mg) in methanol (5 mL) for 12 h at room temperature.  The 

product was purified by preparative silica gel TLC (CH2Cl2/MeOH/H2O = 3/1/0.1 as the 

solvents, Rf = 0.40) to give a white powder (67 mg, 30 % overall yield).  1H NMR (MeOH-d4, 

300 MHz, δ) 7.03 (d, J = 2.1 Hz, 4H), 6.82 (d, J = 2.1 Hz, 4H), 4.55 (d, J = 12.6 Hz, 4H), 4.13 

(t, J = 5.7 Hz, 8H), 3.90 (t, J = 5.4 Hz, 8H), 3.89-3.00 (m, 76H), 3.15-3.00 (m, 8H), 2.33-0.91 

(m, 132H), 0.72 (s, 12H); 13C NMR (MeOH-d4, 75 MHz, δ) 174.02, 163.01, 135.10, 132.77, 
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121.08, 81.15, 80.15, 76.89, 73.40, 71.55, 71.50, 71.40, 71.29, 70.05, 69.81, 69.54, 69.32, 

69.06, 66.44, 64.35, 64.17, 64.07, 63.88, 63.38, 47.21, 46.37, 46.28, 42.74, 41.83, 39.77, 35.68, 

35.40, 35.04, 34.78, 34.74, 33.66, 32.94, 31.99, 30.71, 28.67, 27.88, 27.44, 27.32, 24.77, 23.42, 

22.84, 22.70, 22.34, 22.22, 17.54, 17.19, 14.76, 12.19, 11.89. MALDI-TOFMS: calcd for 

C176H284N4O48Na [M+Na]+, 3245.0; found, 3244.7. Anal. Calcd for C224H332N4O72 (the acetate 

intermediate): C, 63.56; H, 7.91; N, 1.32.  Found: C, 63.31; H, 7.99; N, 1.27. 

Compound 2.  Cholic acid (200 mg, 0.32 mmol) and 3,4,5-trimethoxyaniline (116 mg, 

0.63 mmol) were dissolved in anhydrous MeOH (10 mL).  N-Ethyl-N′-(3-

dimethylaminopropyl)carbodiimide (EDCI) hydrogen chloride salt (121 mg, 0.63 mmol) was 

added.  The mixture was stirred under N2 at room temperature for 12 h.  A solvent was 

removed in vacuo.  The residue was dissolved in methanol (0.5 mL) and precipitated in water 

(5 mL).  The solid was collected by suction filtration and purified by column chromatography 

over silica gel using CH2Cl2/MeOH (1/4) as the eluent to give a white powder (150 mg, 70 % 

yield). mp = 125-130 °C;  1H NMR (MeOH-d4, 300 MHz, δ) 6.95 (s, 2H), 3.96 (br s, 1H), 3.81 

(m, 7H), 3.71 (s, 3H), 3.31 (m, 1H), 2.40-2.25 (m, 4H), 2.00-0.91 (m, 27H), 0.72 (s, 3H); 13C 

NMR (MeOH-d4, 75 MHz, δ) 173.82, 153.22, 135.34, 134.11, 97.61, 97.51, 72.87, 71.69, 

67.87, 60.13, 55.38, 46.84, 46.34, 41.99, 41.82, 39.83, 39.30, 35.83, 35.37, 34.76, 33.95, 32.01, 

30.05, 28.46, 27.63, 26.70, 23.16, 22.15, 16.77, 12.02.  MALDI-TOFMS: calcd for 

C33H51N1O10Na [M+Na]+, 596.8; found, 597.6. 
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CHAPTER 3. Solvnet-induced amphiphilic molecular baskets: 
unimolecular reversed micelles with different size, shape, and 

flexibility 
 

Taken from a paper published in The Journal of Organic Chemistry 2006, 71, 7205-7213.1

 

Abstracts 

Amphiphilic molecular baskets were obtained by attaching facially amphiphilic cholate 

groups to a covalent scaffold, calix[4]arene.  In a solvent mixture consisting of mostly a 

nonpolar solvent (i.e., CCl4) and a polar solvent (i.e., DMSO), the hydrophilic faces of cholates 

turn inward to form a reversed-micelle-like conformer whose stability is strongly influenced by 

preorganization of the scaffold and the length and flexibility of the linker between cholates and 

the scaffold.  Preferential solvation of the hydrophilic faces of the cholates within the molecule 

by the polar solvent is cooperative and gives the fundamental driving force to the 

conformational change.  The reversed-micelle-like conformer is most stable in structures that 

allow multiple cholates to form a microenvironment that can efficiently enrich the polar solvent 

molecules from the bulk solvent mixture. 

 

Introduction 

Conformations represent different 3D arrangements of atoms in a molecule as a result 

of rotations around single bonds.  As a molecule adopts different conformations, its size, shape, 

and distribution of functional groups change simultaneously.  Since these properties are 

intimately related to the physical and chemical behavior of the molecule, conformational 

control could serve as a rational way to design environmentally responsive materials.  This 
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strategy is utilized elegantly by biomolecules, such as proteins, whose binding and catalytic 

functions are frequently regulated through controlled conformational changes.2  In recent years, 

foldamers have attracted a great deal of attention of chemists in different fields.3  As mimics of 

biomolecules with specific, compact conformations, foldamers may not only shed new light on 

the folding and functions of biomolecules, but also enable chemists to prepare biomolecule-like, 

stimuli-responsive materials from a bottom-up approach.  

Conformational changes in biomolecules may be induced by specific molecules, such as 

an enzyme substrate or an allosteric effector,2 or by general changes in environmental 

conditions, including temperature, pH, and solvent polarity.  Response to solvent polarity is not 

a surprise, as hydrophobic interactions4 represent a major driving force for the folding of 

polypeptide chains.  An interesting class of biomolecules that display polarity-induced 

conformational changes is α-helical antimicrobial peptides.5  These small peptides typically 

assume random conformations in water, but change to amphipathic α-helical structures (which 

are surface active and can destabilize the membrane) in contact with bacterial membranes, a 

much less polar environment.  In fact, polarity-induced conformational change is important to 

many biological processes, including the translocation of proteins across membranes.6  

We have been interested in using cholic acid7 as a building block to construct both 

foldamers8 and nonfoldamers,9–10 whose conformations and properties can be reversibly 

switched.  With its large steroid backbone and oppositely facing hydrophilic and hydrophobic 

groups,11 cholic acid is uniquely suited for solvophobically driven conformational changes.  

Previously, we synthesized an amphiphilic molecular basket by coupling cholates to a cone-

shaped, aminocalix[4]arene scaffold.9  The molecule adopts micelle-like conformations in polar 

solvents with the hydrophilic α faces turned outward and reversed-micelle-like conformations 
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in nonpolar ones with the β faces inward.  In this article, we extend the concept to prepare a 

series of cholate baskets with different size, shape, and flexibility.  We were able to 

experimentally verify preferential solvation, which had been speculated to drive the 

conformational changes in the molecular basket.  We also have found an interesting correlation 

between the stability of the reversed-micelle-like conformer and the ability of the cholates to 

form a microenvironment to enrich polar solvents. 

 

Results and discussion  

Design and synthesis of amphiphilic molecular baskets. The geometry of an 

amphiphile dictates the possible aggregates it can form.  For a head/tail amphiphile, spherical 

micelles (or reversed micelles) are the most common aggregates obtained in water (or nonpolar 

solvents).  With a contrafacial topology, cholate amphiphiles tend to associate through the 

solvophobic faces into oligomers that resemble micelles and reversed micelles in polar and 

nonpolar environments, respectively.12  If several cholates are linked covalently, intramolecular 

aggregation should happen readily.  The difference between inter- and intra-molecular 

aggregation is that cholates can freely approach one another to minimize solvophobic exposure 

in the former, but are restricted by the covalent linkers and the topological scaffold employed in 

the latter.  Therefore, other than concentration-independency, “unimolecular” micelles and 

reversed micelles13 from intramolecular aggregation of cholates have the additional advantage 

of being tuned systematically through structural modification. 
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The previously reported 1a can encapsulate hydrophobic guests in polar solvents and 

hydrophilic guests in nonpolar solvents.10  We were interested in creating larger baskets by 

insertion of a spacer between the cholates and the calixarene.  This is represented by compound 

2 with a rigid para-aminobenzoyl spacer and 3 with a flexible 4-aminobutyroyl spacer.  Ring 

inversion in calix[4]arene happens readily when the alkyl substituents at the lower rim are 

smaller than propyl.14  Compound 1b, therefore, has a less preorganized scaffold and is used to 

test whether solvophobic interactions among the cholates are strong enough to fix the 

calixarene into one particular conformation.  Compounds 5, 6, and 7 are control molecules used 

in our studies.  Most of these compounds were synthesized in a straightforward fashion by 

amide coupling between the acids and the corresponding amines.  Compounds 2 and 3 were 

prepared by coupling cholic acid to the spacer first and then the resulting extended acid to 

calixarene amine 4a.    

Conformational changes in calixarene-based molecular baskets.  There were two 

main lines of evidence for the micelle- and reversed-micelle-like conformations of 1a.  It could 

bind hydrophobic guests, such as pyrene, in polar solvent mixtures (e.g., methanol/water = 
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80/20) and hydrophilic guests, such as phenyl β-D-gluocopyranoside, in nonpolar mixtures 

(e.g., methanol/CCl4 = 5/95).10  Pyrene caused upfield shifts of the methyl protons on the β 

faces of the cholates, consistent with the micelle-like conformation with inwardly facing β 

faces.  The other line of evidence for the proposed conformations was from 1H NMR spectral 

data in the absence of guests.  The aromatic protons ortho to the amido group appear as a single 

peak in solvents with intermediate polarity, but as two peaks in either polar or nonpolar 

solvents.9  The magnitude of splitting was found to correlate with not only solvent polarity but 

also the difference of solvophobicities of the α and β faces of the cholates.9  Such a splitting is 

also observed for 1b (Figure 1, ArH), which is based on a conformationally mobile scaffold. 

Splitting by itself does not prove the two proposed conformers, but does support transition 

between two ordered conformations as the solvents go from mostly polar to mostly nonpolar.  

Given the binding properties mentioned above, it is reasonable to assume the conformer in 

polar solvents is micelle-like and the one in the nonpolar solvents is reversed-micelle-like.                   
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Figure 1. Portions of the 1H NMR (400 MHz) spectra of 1b in different ratios of DMSO-

d6/CCl4 at ambient temperature.  The solvents are 100, 90, 80, 70, 60, 50, 40, 30, 20, and 10% 

DMSO from top to bottom.  See the structure of cholic acid for the OH labeling. 

 

Cholate-substitution on the calixarene clearly had a dramatic effect on the calixarene, 

because the parent calixarene 4b contained extremely broad peaks in the 1H NMR spectrum.  

Since the distance between the two aromatic proton peaks correlate with the stability of the 

ordered, micelle-like or reversed-micelle-like conformers based in 1a,9,10 we expected a smaller 

splitting in the less preorganized 1b, as part of the solvophobic interactions among the cholates 

need to compensate for the loss of entropy during formation of an ordered conformation.  This 

is indeed the case.  For example, the two peaks are separated by 158 Hz for 1a, but 140 Hz for 

1b in 10% DMSO.   

Change of conformation is also evident from the methylene bridge protons (Ar-CH2-Ar), 

which are diagnostic of calix[4]arene conformations.14  The “axial” protons at ~ 4.2 ppm start 

to appear as (part of) an AB quartet with DMSO ≈ 60% and become better formed with lower 

DMSO, consistent with the higher stability of the cone conformer.  Conversion from a 

conformationally random calixarene to the cone-conformer in 1b indicates the presence of 

intramolecular attractions among the cholates, in agreement with the proposed reversed-

micelle-like conformations.  Interestingly, appearance of the AB quartet concurs with the 

splitting of the aromatic peaks, implying both changes are of the same origin.  This result 

confirms our previous conclusion that splitting is caused by the adoption of ordered 

conformations (i.e., a micelle-like conformation in polar solvents and a revered-micelle-like 

conformation in nonpolar solvents).  
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The possibility of intermolecular aggregation of 1a was ruled out previously, because 

its 1H NMR spectrum was nearly unchanged over 0.2–15 mM of concentration.10  All the NMR 

experiments in the current study were performed at the lower end of the concentration range, 

typically about 1 mM.  Aggregation should not be a problem.16  Additional evidence against 

intermolecular aggregation comes from the appearance of the proton signals.  The broadening 

of peaks typically associated with intermolecular aggregation was essentially absent in all 

compounds studied in this paper.     

Splitting of the aromatic protons occurs in 1b at the polar end (e.g., in 100% DMSO) as 

well, suggesting formation of another ordered structure, most likely the micelle-like conformer.  

The methylene bridge protons in this case, however, do not appear as an AB quartet 

characteristic of the cone, but are broad and nearly invisible.  The original basket 1a did not 

show such a difference in the polar end, because calix[4]arene is already fixed as the cone by 

the long hexyl groups.9  It seems that solvophobic interactions among the cholates are different 

for the normal and reversed micelle-like conformers.  This is quite likely because solvophobic 

interactions occur through direct contact of the cholate β faces in polar solvents for the former 

conformer, but is probably mediated by polar solvent molecules for the latter.  In other words, 

in the reversed-micelle-like conformer, DMSO is enriched in the interior of the molecule from 

the mostly nonpolar environment and serves to “bridge” the gap between the α faces of the 

cholates.  Direct contact of the α faces to simultaneously satisfy all hydrogen bonds in four 

cholates seems impossible, especially because the cholate backbone is bent toward the α face.  

In fact, mediation by polar solvents is also required in surfactant reversed micelles, which 

typically need to be stabilized by a small amount of water.17  The cone conformation allows the 

α faces of all four cholates to be simultaneously solvated by entrapped DMSO molecules and 
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thus should be the best for the reversed-micelle-like conformer.  On the other hand, direct 

contact of the β faces, which is preferred by  the normal-micelle-like conformer, may not be 

best in the cone-shaped calixarene.  Given that sodium cholate frequently forms dimers in 

aqueous solutions,12 it is quite possible that other conformations (such as 1,3-alternate) are 

equally good for solvophobic interactions; thus, no particular conformation of calixarene may 

be favored by the normal micelle-like conformer.   

In aprotic solvents, such as DMSO/CCl4, both the NH and the OH protons are clearly 

visible.  As shown in Figure 1, these protons generally move to high field with a decrease in the 

DMSO percentage. Note that the doublets of OH protons are clearly visible in all solvent 

mixtures (as also in Figure 4).  In nonpolar solvents, aggregation would occur through 

hydrogen bonds and undoubtedly would complicate the OH signals.  Clear OH signals thus 

once again provide evidence against intermolecular aggregation.  Interestingly, the upfield shift 

seems to slow down below 50–60% DMSO and even reverses for the OH protons in < 20% 

DMSO.  The trend is more obvious when changes in the chemical shifts are plotted against the 

DMSO percentages (Figure 2).  The chemical shifts of the NH and OH directly reflect the 

extent of hydrogen-bonding interactions involved by these protons.18–23  In our mixed solvents, 

only DMSO can participate in hydrogen bonding; thus the chemical shifts of the NH and OH 

groups are good indicators of the “local concentration” of DMSO near these groups.  Figure 2a 

shows the relationship between –∆δNH and the DMSO percentage for several compounds.  The 

curves are nearly identical for monomer 5 and phenyl acetamide 6, indicating similar solvation 

of amides in both compounds.  Apparently, a single cholate group does not have any DMSO-

enriching effect in comparison to a simple amide.  Under such conditions, –∆δNH–DMSO% 

simply reflects the concentration of DMSO in the bulk mixture.  When multiple cholates are 
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assembled on a calixarene, a completely different situation is observed. The –∆δNH–DMSO% 

curves for 1a and 1b (  and ) initially trace those of control compounds 5 and 6 (  and ), 

suggesting that the NH groups are sensing the DMSO concentration in the bulk in high DMSO 

solvents just as 5 and 6.  When DMSO in the bulk drops below 50–60%, however, the curves 

bend downward substantially.  In fact, the NH protons of 1a and 1b experience the same degree 

of hydrogen bonding interactions (as indicated by the magnitude of –∆δ in 10% as in 40–50% 

DMSO).  In other words, it seems as if 40–50% DMSO is still present near the amide protons 

even when the bulk solvent only contains 10% DMSO.  
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Figure 2. Changes in the 1H NMR chemical shifts of (a) NH and (b) OH as a function 

of solvent composition in mixtures of DMSO-d6/CCl4 for compounds 1a, 1b, 5, and 6. Data for 

OH7 sometimes cannot be obtained because of overlapp with the solvent signals (as shown by 

Figure 1).  Assignment of the OH groups is based on a 2D COSY spectrum (Figure 3). 

 

The OH12 group on the cholate shows a similar downward deviation from the control 

curve (Figure 2b).  In fact, the “DMSO-enriching” effect is so strong toward the low polarity 

end that, as far as this hydroxyl is concerned, the local DMSO concentration actually increases  
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when the bulk DMSO is decreased from 20 to 10%. Most interestingly, the OH3 proton, 

located at the periphery of the basket, shows less pronounced DMSO-enrichment (  in Figure 

2b) than OH12 (  in Figure 2b), which is in the interior. Such a trend is more or less 

maintained in all of our cholate-derived compounds.  This suggests that cooperativity exists 

between the polar groups to enrich DMSO.  Among a cluster of polar groups, the ones in the 

center are more strongly solvated by DMSO than the ones near the edge. 

 

Figure 3.  The COSY NMR spectrum (400 MHz) of 1a in DMSO-d6. 

 

Conformational changes in our amphiphilic baskets were previously hypothesized to 

occur as a result of preferential solvation of the hydrophilic faces of the cholates by the polar 

solvent molecules.9  Similar conclusions were also inferred from their guest-binding properties 

in response to polar solvents.10  The –∆δ–DMSO% curves give an estimate of the average 

DMSO concentration near the polar groups and provide further evidence for the formation of 

the reversed-micelle-like conformers.  Such conformers by definition have inwardly facing 



www.manaraa.com

 39

polar groups and, similar to surfactant reversed micelles, should enrich polar solvents from a 

nonpolar environment to its interior.  According to Figures 2a and 2b, preferential solvation 

(shown by deviation from control curves) seems to become important below 50–60% DMSO 

and is most pronounced when the solvent contains 10–20% DMSO.  This effect should be even 

stronger below 10% DMSO.  However, solubility often becomes a problem in such mixtures, 

precluding measurement.    
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Figure 4.  Changes in the 1H NMR chemical shifts of (a) NH and (b) OH as a function of the 

solvent composition in mixtures of DMSO-d6/CCl4 for compound 2. 

 

For compounds 2 and 3, splitting of the aromatic protons is hardly observable even 

under the most polar or nonpolar conditions.  Thus, direct connection between cholate and the 

calixarene is necessary for the splitting and conformational insight cannot be obtained in this 

way.  The –∆δ–DMSO% curves for NH/OH, however, show similar DMSO-enrichment as in 

1a and 1b, suggesting adoption of a reversed-micelle-like conformation in low-polarity 

solvents (Figures 4 and 5).  Apparently, insertion of short spacers between the cholates and 

calixarene does not affect the conformational changes significantly, at least for the reversed-

micelle-like conformer. 
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Figure 5.  Changes in 1H NMR chemical shifts of (a) NH and (b) OH as a function of solvent 

composition in mixtures of DMSO-d6/CCl4 for compound 3. 

 

Conclusions 

Multiple cholates attached to a covalent scaffold can readily aggregate intramolecularly 

to form unimolecular micelles and reversed micelles.  The micelle-like conformer prefers direct 

contact of the hydrophobic β faces of cholates and seem to be best formed in “tight” structures.  

The reversed-micelle-like conformer is mediated by polar solvent molecules entrapped in the 

interior of the molecule and can tolerate significant modification of the structures.  The 

calix[4]arene-derived baskets can also tolerate spacers.  Both rigid 4-aminobenzoyl and flexible 

4-aminobutyroyl spacers afford stable reversed-micelle-like conformers in calix[4]arene-based 

baskets.  

Experimental Section 

General Methods.   

Anhydrous tetrahydrofuran (THF) and methylene chloride were dried by passage 

through a column of activated alumina under compressed nitrogen.  Cholic acid was 
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crystallized from 95% ethanol and dried at 90 °C under vacuum.  All other reagents and 

solvents were of A.C.S. certified grade or higher, and were used as received from commercial 

suppliers.  All glassware and syringes were dried in an oven at least overnight prior to use.  

 

Synthesis 

Compound 4a.  This aminocalixarene was synthesized according to a literature 

procedure.25  1H NMR (300 MHz, CDCl3, δ) 6.07 (s, 8H), 4.29 (d, J = 13.2 Hz, 4H), 3.74 (t, J = 

7.6 Hz, 8H), 2.90 (d, J = 13.2 Hz, 4H), 1.90–1.80 (m, 8H), 1.45–1.13 (m, 24H), 0.89 (t, J = 7.2 

Hz, 12H). 

Compound 4b.  This aminocalixarene was synthesized according to a literature 

procedure.26  1H NMR (DMSO-d6, 300 MHz, δ) 6.08 (br s, 8H), 4.31 (br s, 8H), 3.30 (m, 12H). 

Compound 1a.  The synthesis was reported previously.27  1H NMR (CD3OD, 300 

MHz, δ) 6.97 (d, J = 2.4 Hz, 4H), 6.82 (d, J = 2.4 Hz, 4H), 4.44 (d, J = 12.0 Hz, 4H), 4.96 (s, 

4H), 3.88 (t, J = 6.6 Hz, 8H), 3.80 (s, 4H), 3.37 (m, 4H), 3.11 (d, J = 12.0 Hz, 4H), 2.40–0.90 

(m, 120H), 0.72 (s, 12H); 13C NMR (CD3OD, 75 MHz, δ): 173.6, 153.3, 135.1, 132.3, 121.0, 

75.6, 73.1, 71.7, 68.2, 47.1, 46.5, 41.8, 41.8, 39.73, 39.72, 39.3, 35.9, 35.4, 34.9, 34.0, 32.3, 

32.0, 30.4, 30.1, 28.4, 27.7, 26.6, 26.2, 23.34, 23.32, 23.0, 22.4, 17.1, 13.8, 12.4.  MALDI-

TOFMS: [M+Na]+ calcd. for C148H228N4NaO20: 2405.7; found: 2405.7. 
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Compound 8.28  Cholic acid triformate29 (1.92 g, 3.90 mmol) was dissolved in dry 

CH2Cl2 (40 mL).  Oxalyl chloride (0.60 mL, 6.88 mmol) was added by a syringe, followed by 3 



www.manaraa.com

 42

drops of dry DMF.  The mixture was stirred at rt under a N2 flush for 40 min. The solvent was 

removed in vacuo.  Dry CH2Cl2 (10 mL) was added and evaporated again in vacuo.  The 

residue was dissolved in dry CH2Cl2 (30 mL), to which a solution of ethyl 4-aminobenzoate 

(0.664 g, 4.02 mmol), and Et3N (0.7 mL, 5.0 mmol) in CH2Cl2 (50 mL) was added.  The 

mixture was stirred at rt under N2 for 46 h, diluted with CH2Cl2 (20 mL), washed with 2N HCl, 

dried (MgSO4), and concentrated in vacuo to give a yellow foam.  The foam was dissolved in 

methanol (100 mL), THF (20 mL), and 1 M LiOH (45 mL).  The mixture was allowed to sit at 

rt for 17 h. Most of the solvent was evaporated in vacuo.  The residue was acidified with 1M 

H2SO4 untill pH = 2.  The solid was collected by suction filtration and washed with CH3CN (10 

mL) to afford a white powder (1.779 g, 86% yield).  1H NMR (DMSO-d6, 300 MHz, δ) 10.17 

(s, 1H), 7.85 (d, J = 8.7 Hz, 2H), 7.68 (d, J = 8.7 Hz, 2H), 4.30 (br s, 1H), 4.11 (d, J = 2.9 Hz, 

1H), 4.00 (d, J = 2.9 Hz, 1H), 3.78 (br s, 1H), 3.60 (br s, 1H), 3.16 (br s, 1H), 2.42–0.76 (m, 

30H), 0.58 (s, 3H). 

N-Hydroxysuccinimide ester of cholic acid.30  Dicyclohexylcarbodiimide (DCC, 

1.339 g, 6.49 mmol) was added to a solution of cholic acid (2.447 g, 5.99 mmol) and N-

hydroxysuccinimide (0.733 g, 6.37 mmol) in CH3CN/THF (10 mL/50 mL).  After 17 h at rt, the 

solid was removed by filtration.  The filtrate was concentrated in vacuo to give a white foam.  

The material was used without further purification. 

Compound 9.31  The N-hydroxysuccinimide ester of cholic acid prepared above was 

dissolved in DMF (20 mL) and H2O (3 mL).  4-Aminobutyric acid (0.642 g, 6.23 mmol) and 

DIPEA (1.562 g, 12.1 mmol) were added.  The mixture was stirred at 75 °C for 23 h.  The 

solvent was removed in vacuo.  The residue was purified by column chromatography over 

silica gel using CHCl3/MeOH/AcOH (6/1/0.1 to 5/1/0.1) as the eluent to give a white foam 

(1.463 g, 49.5% yield).  1H NMR (CD3OD, 300 MHz, δ) 3.95 (br s, 1H), 3.79 (br s, 1H), 3.37 
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(m, 1H), 3.42–3.33 (m, 1H), 3.21–3.18 (m, 2H), 2.32 (t, J = 7.5 Hz, 2H), 2.26–0.91 (m, 32H), 

0.70 (s, 3H). 

Compound 5.  Compound 5 was synthesized according to a literature procedure.32  1H 

NMR (CD3OD, 300 MHz, δ ) 6.95 ( s, 2Η), 3.96 (broad s, 1H), 3.81 (m, 7H), 3.71 (s, 3H), 3.31 

(m, 1H), 2.40–2.25 (m, 4H), 2.00–0.91 (m, 27H), 0.72 (s, 3H); 13C NMR (CD3OD, 75 MHz, δ) 

173.8, 153.2, 135.3, 134.1, 97.6, 97.5, 72.9, 71.7, 67.9, 60.1, 55.4, 46.8, 46.3, 42.0, 41.8, 39.8, 

39.3, 35.8, 35.4, 34.8, 34.0, 32.0, 30.1, 28.5, 27.6, 26.7, 23.2, 22.2, 16.8, 12.0. MALDI-

TOFMS (m/z): [M + Na]+ calcd for C33H51N1O10Na, 596.8; found, 597.6. 

Compound 1b.  Cholic acid (349.3 mg, 0.855 mmol), 4b (105.0 mg, 0.194 mmol), and 

benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP, 412.4 mg, 

0.931 mmol) were dissolved in anhydrous DMF (15 mL) in N2.  Diisopropylethylamine 

(DIPEA, 238.0 mg, 1.707 mmol) was added by a syringe.  The reaction mixture was stirred at 

50 °C for 18 h.  The solution was poured into brine (50 mL).  The precipitate was filtered, 

washed with water (2  10 mL) and CH3CN (5 mL), and purified by preparative TLC (SiO2, 

CHCl3/CH3OH = 8/1) to give a white powder (301.9 mg, 0.144 mmol, 74 % yield).  1H NMR 

(DMSO-d6/CCl4 = 1/1, 400 MHz, δ) 9.36 (s, 4H), 7.20 (s, 4H), 6.86 (s, 4H), 4.24 (d, J = 11.6 

Hz, 4H), 4.06 (d, J = 4.4 Hz, 4H), 3.95 (d, J = 4.0 Hz, 4H), 3.78 (m, 16H), 3.62 (s, 4H), 3.18 (s, 

4H), 3.10 (d, J = 12.4 Hz, 4H), 2.19–0.75 (m, 124H), 0.61 (s, 12H); 13C NMR  (75 MHz, 

CD3OD, δ) 171.6, 153.9, 134.2, 134.1, 119.9, 71.5, 70.9, 66.8, 46.7, 46.2, 42.0, 41.8, 35.8, 

35.4, 34.9, 33.9, 32.0, 30.9, 29.1, 27.8, 26.7, 23.3, 23.1, 17.6, 12.9. MALDI-TOFMS (m/z): [M 

+ Na]+ calcd for C128H187N4O20Na: 2125.9; found: 2128.6.  

Compound 2.  Acid 8 (450 mg, 0.854 mmol, see the Supporting Information for its 

synthesis), 4a (159 mg, 0.194 mmol), and BOP (378 mg, 0.854 mmol) were dissolved in 
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anhydrous DMF (10 mL).  DIPEA (220 mg, 1.708 mmol) was added by a syringe.  The 

reaction mixture was stirred at 50 °C for 20 h, and solid was precipitated in acetone (100 mL).  

The precipitate was filtered, washed with acetone (2  10 mL), and purified by preparative 

TLC (SiO2, CHCl3/CH3OH = 4/1) to give a white powder (250.4 mg, 45 % yield).  1H NMR 

(DMSO-d6/CCl4 = 1/1, 300 MHz, δ) 10.04 (s, 4H), 9.77 (s, 4H), 7.79 (d, J = 9.0 Hz, 8H), 7.59 

(d, J = 8.4 Hz, 8H), 4.32 (s, 8H), 4.11 (s, 4H), 4.00 (d, J = 2.1 Hz, 4H), 3.80 (m, 8H), 3.60 (m, 

4H), 3.15 (m, 8H), 2.30–0.79 (m, 168H), 0.57 (s, 12H); 13C NMR  (75 MHz, DMSO-d6/CCl4 = 

1/1, δ) 174.1, 166.6, 153.6, 141.9, 135.2, 132.2, 129.7, 128.4, 121.8, 119. 7, 77.8, 75.7, 73.2, 

71.7, 68.3, 47.0, 46.5, 35.4, 34.9, 34.7, 34.2, 32.3, 32.0, 31.27, 31.25, 30.4, 30.1, 28.3, 27.74, 

26.5, 26.2, 23.3, 23.0, 22.5, 17.3, 14.1, 12.5. MALDI-TOFMS (m/z): [M + Na]+ calcd for 

C176H247N8O24Na: 2881.9; found: 2881.8.  

Compound 3.  Acid 9 (264.6 mg, 0.536 mmol, see the Supporting Information for its 

synthesis), 4a (100.1 mg, 0.122 mmol), and BOP (237.4 mg, 0.536 mmol) were dissolved in 

anhydrous DMF (10 mL) in N2. DIPEA (138 mg, 1.072 mmol) was added by a syringe.  The 

reaction mixture was stirred at 50 °C for 20 h, and solid was precipitated in acetone (50 mL).  

The precipitate was filtered, washed with acetone (2  10 mL), and purified by preparative 

TLC (SiO2, CHCl3/CH3OH = 4/1) to give a white powder (120.2 mg, 36 % yield).  1H NMR 

(DMSO-d6/CCl4 = 1/1, 300 MHz, δ) 9.45 (s, 4H), 7.76 (s, 4H), 6.89 (d, J = 4.0 Hz, 8H), 4.32 

(m, 8H), 4.09 (s, 4H), 4.00 (s, 4H), 3.75 (s, 8H), 3.57 (s, 4H), 3.14 (m, 8H), 2.99 (m, 12H), 

2.24–0.77 (m, 168H), 0.54 (s, 12H); 13C NMR  (75 MHz, DMSO-d6/CCl4 = 1/1, δ) 173.2, 

170.8, 152.4, 134.7, 133.8, 120.2, 75.6, 71.7, 71.1, 66.9, 46.8, 46.4, 42.2, 42.0, 38.8, 36.0, 35.9, 

35.6, 35.1, 34.3, 33.4, 32.4, 32.4, 31.1, 30.4, 29.2, 28.0, 26.9, 26.2, 26.0, 23.5, 23.3, 23.1, 17.8, 

14.6, 13.0. MALDI-TOFMS (m/z): [M + H]+ calcd for C164H255N8O24: 2723.8; found: 2725.9.  
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CHAPTER 4. Solvent-tunable binding of hydrophilic and 
hydrophobic guests by amphiphilic molecular baskets 

 
A paper published in The Journal of Organic Chemistry 2005, 70, 7585-7591.1

 

Abstracts 

Responsive amphiphilic molecular baskets were obtained by attaching four facially 

amphiphilic cholate groups to a tetraaminocalixarene scaffold.  Their binding properties could 

be switched by solvent changes.  In nonpolar solvents, the molecules utilized the hydrophilic 

faces of the cholates to bind hydrophilic molecules, such as glucose derivatives.  In polar 

solvents, the molecules employed the hydrophobic faces of the cholates to bind hydrophobic 

guests.  A water-soluble basket could bind polycyclic aromatic hydrocarbons, including 

anthracene, pyrene, and perylene.  The binding free energy (–∆G) ranged from 5 to 8 kcal/mol 

and was directly proportional to the surface area of the aromatic hosts.  Binding of both 

hydrophilic and hydrophobic guests was driven by solvophobic interactions. 

 

Introduction 

Rigid supramolecular hosts with minimal conformational flexibility have traditionally 

been favored by chemists because of their perceived benefits in binding affinities.  Most 

biomolecules, on the other hand, can respond to environmental stimuli by changing their 

conformations.  As suggested by the induced-fit model,2 the substrate of an enzyme can cause a 

necessary conformational change of the active site (to bring the catalytic groups into proper 

alignment), but non-substrates cannot.  Allosteric proteins change their conformations—and in 

turn their binding or catalytic functions—upon binding with effectors or inhibitors.3  
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Conformational responses may result from changes of general environmental properties as well.  

Proteins may denature, or undergo drastic unfolding of the peptide chains, when pH, ionic 

strength, temperature, or other environmental properties are altered.   

In addition, solvent polarity also has a profound influence on the conformations of 

biomolecules, as hydrophobic interaction4 (or, more generally, solvophobic interaction) is a 

major driving force for the folding of polypeptide chains.  One class of biomolecules that adopt 

dramatically different conformations with the change of environmental polarity is α-helical 

antimicrobial peptides.5  These peptides tend to assume random conformations in water, but 

change to amphipathic α-helical structures when they come in contact with bacterial 

membranes, a much less polar environment.  In fact, polarity-induced conformational change is 

important to many biological processes, including the translocation of proteins across 

membranes.6 

The design of synthetic molecules with controllable conformations has received much 

attention in recent years and is highlighted in foldamer research.7  Foldamers are synthetic 

oligomers with biomolecule-like, ordered conformations.  Because their conformational 

flexibility allows their folding and unfolding (and in turn their properties) to be controlled by 

physical or chemical stimuli, they are very attractive as responsive materials.  However, using 

weak, noncovalent forces to stabilize desired conformations in foldamers (and in synthetic 

molecules in general) remains a difficult challenge.7 
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1a, R = CH2CH2OCH2CH3
1b, R = (CH2)5CH3
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We previously reported an amphiphilic molecular basket 1a constructed from cholic 

acid.8  Cholic acid9 is an example of a facial amphiphile.10  The cone-shaped 

aminocalix[4]arene is used as a scaffold to promote intramolecular aggregation among the 

cholates.  In polar solvents, the hydrophilic α faces of the cholates point outward and the 

molecule resembles a unimolecular micelle.  In nonpolar solvents, the hydrophobic β faces turn 

outward, giving a reversed-micelle-like conformation.11,12  We hypothesize that the internal 

cavity of 1a is sufficiently large to bind guest molecules and its conformational flexibility will 

allow it to bind either hydrophilic or hydrophobic guests in a solvent-dependent fashion.  In this 

paper, we report the dual binding properties of 1 in different solvents.  We also find that a 

water-soluble version of 1 indeed acts as a unimolecular micelle to solubilize hydrophobic 

molecules in aqueous solutions. 

 

Results and discussion 

Binding Properties of the Reversed-Micelle-like Conformer in Nonpolar Solvents.  

Similar to surfactant reversed micelles,13 the reversed-micelle-like conformer of 1a requires a 

small amount of a polar solvent for stability.  A typical solvent mixture is carbon 
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tetrachloride/methanol (90/10).  Carbon tetrachloride is a better solvent than chloroform for the 

reversed-micelle-like conformer, which has a nonpolar exterior.  In the reversed-micelle-like 

conformer, all the hydroxyl groups turn inward to create a binding pocket, which should be 

mostly filled with the polar solvent.  We expect that 1a should bind a hydrophilic guest of 

appropriate size.  Because cholate groups are totally aliphatic, we choose hydrophilic guests 

with an aromatic substituent, hoping to monitor the binding event by complexation-induced 1H 

NMR chemical shifts.  Also, during NMR titrations, both the host and the guest need to be 

sufficiently soluble in the solvents; a totally hydrophilic guest may not have good enough 

solubility for the titration experiments.    

Indeed, when 1a is mixed with phenyl β-D-glucopyranoside in carbon 

tetrachloride/methanol (90/10), the proton signals on the phenyl of the guest shift upfield.14  

The binding stoichiometry was studied by using Job plots (Figure 1).  Even though a few data 

points (at χ = 0.1 and 0.9) are missing due to signal overlap, the maximum at 0.5 molar fraction 

clearly indicates a 1:1 binding stoichiometry.  The changes in chemical shifts are most 

significant for the para protons, followed by the meta and the ortho protons.  It seems that the 

guest resides in the binding site with its phenyl pointing down to the calixarene, possibly as a 

result of favorable π−π interaction between the phenyl and the calixarene and solvophobic 

interaction between the sugar unit and the cholate groups. 
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Figure 1. The Job plots for the binding between 1a and phenyl β-D-glucopyranoside, in which 

is the molar fraction of 1.  The chemical shift changes (∆δ) are for the para (◆), meta ( ), and 

ortho (■ ) protons of phenyl β-D-glucopyranoside. 

 

In Figure 2, the chemical shift of the ortho protons of the guest is plotted as a function 

of 1a in different solvents.  The binding strength clearly decreases as the percentage of 

methanol increases from 10 to 15% (data shown as □  and ◆, respectively).  Binding is even 

weaker in 20% methanol, as the chemical shifts of the guest protons are nearly unchanged at 

different concentrations of host 1a (data not shown).  Because 1a has limited solubility in 5% 

methanol, we synthesized 1b in order to determine the association constant (Ka) more 

accurately.  Host 1b has guest-binding substructures identical to 1a, but has four hexyl groups 

at the lower rim of the calixarene and thus is more soluble in nonpolar solvents than 1a.  As 

expected, the chemical shift changes of the β-D-glucopyranoside guest are most pronounced in 

5% methanol with the addition of 1b (data shown as ■ ).   



www.manaraa.com

 56

6.75

6.85

6.95

7.05

7.15

7.25

0 2 4 6 8 10 12 14 16
Concentration (x 10-3 M)

C
he

m
ic

al
 S

hi
ft 

(p
pm

)

 

Figure 2. Plot of the chemical shift of the ortho protons in phenyl β-D-glucopyranoside as a 

function of the concentration of 1a in 85/15 (◆), and 90/10 (□ ), and 1b in 95/5 (■ ) 

CCl4/CD3OD (vol/vol).  Theoretical curves are nonlinear least-square fitting to a 1:1 binding 

isotherm. 

 

Aggregation of the host is negligible under the binding conditions, as indicated by the 

fact that the 1H NMR spectrum of 1a or 1b is essentially the same when its concentration is 

varied from 0.2 to 15 mM.  The binding constants are obtained by nonlinear least-square fitting 

and are summarized in Table 1.  According to the binding data, host-guest interaction between 

1a and phenyl β-D-glucopyranoside becomes weaker as the percentage of methanol increases 

in the solvent mixture: –∆G = 3.4, 3.3, and 2.5 kcal/mol in 5, 10, and 15% methanol, 

respectively (Entries 1-3 of Table 1).  In 20% methanol, no binding can be detected by 1H 

NMR spectroscopy titration (entry 4).  The binding properties of 1a and the more soluble 1b 

are quite similar in the reversed-micelle-like  
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Table 1. Association constants (Ka) between 1 and several hydrophilic guests at 20 °C. 

a The error is larger than usual because of the low solubility of 1a in the solvent mixture. 

Entry Guest Host Solvent Mixture Ka (M–1) 
–∆G 

(kcal/mol) 

1 
phenyl-β-D-

glucopyranoside 
1a CCl4/CD3OD = 95/5 330 ± 180a 3.4 

2 
phenyl-β-D-

glucopyranoside 
1a CCl4/CD3OD = 90/10 290 ± 60 3.3 

3 
phenyl-β-D-

glucopyranoside 
1a CCl4/CD3OD = 85/15 70 ± 10 2.5 

4 
phenyl-β-D-

glucopyranoside 
1a CCl4/CD3OD = 80/20 --b --b

5 
phenyl-β-D-

glucopyranoside 
1b CCl4/CD3OD = 95/5 340 ± 60 3.4 

6 
phenyl-β-D-

glucopyranoside 
1b CCl4/DMSO = 90/10 --b --b

7 
phenyl-α-D-

glucopyranoside 
1a CCl4/CD3OD = 90/10 140 ± 30 2.9 

b Almost no change in the chemical shifts occurrs during 1H NMR spectroscopy titration, 
suggesting negligible binding. 

 

conformation: Ka is 330 M–1 (Entry 1) with 1a and 340 M–1 with 1b (Entry 5) for the binding of 

phenyl β-D-glucopyranoside in 5% methanol.  

These data rule out the a π−π interaction between the calixarene and the phenyl group of 

the guest as the major driving force for the binding.  Instead, solvophobic interaction plays a 

decisive role.  This is because π−π interaction is expected to decrease in a solvent with higher 

polarizability.15  Thus, a π−π-based binding should increase in strength when the amount of 

methanol (a less polarizable solvent) increases and the carbon tetrachloride (a more polarizable 



www.manaraa.com

 58

solvent) decreases in the solvent mixture.  We also performed a similar titration for phenol in 

CCl4/CD3OD (90/10) and found no shifts in the proton signals of either the guest or the host.  

This result again suggests that the contribution of π−π interaction to the overall binding energy 

is minor at most.  

Interestingly, the initial 5% increase in methanol reduces the binding affinity only 

slightly (~0.1 kcal/mol), but a further increase by the same magnitude (i.e., from 10 to 15%) 

causes a much larger reduction (~0.8 kcal/mol).  Such a solvent response is different from what 

have been observed in conventional solvophobically driven associations in rigid 

supramolecular hosts.  For example, Schneider and co-workers16 found that, in several 

solvophobically driven host-guest complexations, the binding free energies correlate linearly 

with the solvophobicity parameters17 of the solvents.  Because solvophobicity parameters of 

binary mixtures are almost linearly related to the volume percentages, the binding energies (–

∆G) were found to vary linearly as a function of the solvent volume percentages.15,16  The 

nonlinear solvent effect in our system probably is a result of the conformational flexibility of 

the host.  As the percentage of methanol increases, two solvent effects are conceivable: (a) the 

guest and the guest-binding surface of the host become better solvated;  (b) the reversed-

micelle-like conformer of host 1a becomes less stable.  The first solvent effect is universal and 

causes a general reduction in binding affinities as the host or the guest is better solvated.  The 

second effect makes 1a an inferior host and is unique for conformationally mobile hosts. 

Because the polar solvent plays an important role in stabilizing the reversed-micelle-like 

conformer, we were interested in the effect of a polar solvent on the binding affinities.  The 

polar solvent, DMSO, is also miscible with carbon tetrachloride.  Figure 3a shows the 1H NMR 

spectra of 1b in different ratios of DMSO/carbon tetrachloride.  The aromatic protons ortho to 
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the amido group show distinct changes according to the solvent composition as a single peak at 

an intermediate ratio (90% DMSO in this case) but as two peaks above or below this ratio.  

Such nonequivalence of the aromatic protons also happens with 1a (Figure 3b) and has been 

attributed to the formation of ordered (micelle- or reversed-micelle-like) conformations.8  

Unlike 1a, however, the reversed-micelle-like conformer of 1b gives rather sharp proton 

signals, especially in solvents with less than 20% DMSO.  Also, the splitting between the two 

peaks for 1b in carbon tetrachloride/DMSO is consistently larger than those for 1a in carbon 

tetrachloride/methanol.  Previously, the splitting between the two peaks was found to a good 

indicator of the stability of a particular (micelle-like or reversed-micelle-like) conformer.8  

Therefore, DMSO in carbon tetrachloride seems to be an especially good solvent mixture for 

studying reversed-micelle-like conformers.   

(a)

6.706.806.907.007.107.20     

(b)

6.706.806.907.007.107.20  

Figure 3. (a) The aromatic regions of the 1H NMR (300 MHz) spectra of 1b in different ratios 

of DMSO-d6/CCl4 at ambient temperature.  (b) The aromatic regions of the 1H NMR (300 
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MHz) spectra of 1a in different ratios of CD3OD/CCl4 at ambient temperature.  The solvents in 

both cases are 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90% CCl4 from top to bottom.   

 

However, binding between 1b and phenyl-β-D-glucopyranoside is extremely weak in 

carbon tetrachloride/DMSO (90/10) and almost undetectable by 1H NMR spectroscopic 

titration.  This result was quite a surprise to us initially.  We then realized that weak binding is 

only unexpected if one assumes that a more stable conformer is a better host.  Strong binding, 

however, requires more than a suitable host structure.  This is because the polar solvents 

entrapped by the host needs to be displaced by the guest during binding.  It is more difficult to 

displace strongly solvating solvent molecules than weakly solvating ones.  Therefore, the same 

interaction that stabilizes the reversed-micelle-like conformer (i.e., preferential solvation of the 

hydrophilic α faces of cholates by DMSO or methanol) actually works against the host in the 

guest binding.  Apparently, selection of solvents in solvophobically driven molecular 

recognition is even more important in conformationally mobile systems than in rigid ones.  The 

amphiphilic baskets described in this paper in fact only have limited conformational mobility, 

which mostly comes from the few bonds between the fused steroidal rings and the calixarene.  

Even for such a molecule, a small change in solvent composition has a very large effect on its 

conformational and binding properties. 

Host 1a also can bind the α-anomer of phenyl α-D-glucopyranoside, albeit with a 

reduced association constant of 140 M–1 (entry 7 of Table 1) in carbon tetrachloride/methanol 

(90/10).  This moderate selectivity is probably due to the shape of the binding pocket, which 

prefers the straighter β-anomer because of the upright arrangement of the cholate units.   
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Binding Properties of the Micelle-like Conformer in Polar Solvents.  In a polar 

environment, 1a is expected to bind hydrophobic guests by its micelle-like conformer.  We 

have used a mixture of deuterated methanol/water (80/20) as the solvent, in which 1a has 

solubility in the millimolar range.  The addition of pyrene causes an upfield shift of the methyl 

protons on the hydrophobic β face of the cholates.  Hence, the guest is bound through favorable 

hydrophobic contact with the host.  An accurate determination of the association constant is 

difficult, because neither the host nor the guest has good solubility in the solvent.  We then 

performed 1H NMR spectroscopic titration with 1-aminopyrene, which is more soluble than 

pyrene in aqueous methanol.  The binding constant was found to be about 10 M–1 (entry 1 of 

Table 2). 

 

Table 2. Association constants (Ka) between 1 or 2 and several hydrophobic guests at 20 °C. 

a Determined by 1H NMR titration. 

Entry Guest Host Solvent Mixture Ka (M–1) 
–∆G 

(kcal/mol) 

1 1-aminopyrene a 1a 
CD3OD/D2O = 

80/20 
10 ± 5 1.3 

2 1-aminopyrene 1a CD3OD --c --c

3 anthraceneb 1b water 7.8 × 103 5.3 

4 pyreneb 1b water 5.0 × 104 6.4 

5 peryleneb 1a water 6.8 × 105 8.0 

b Determined by a dye solubilization method with linear fitting of the experimental data 
(see text).  The R value is 0.982, 0.994, and 0.982 for anthracene, pyrene, and perylene, 
respectively. 
c Nearly no change in chemical shifts occurred during 1H NMR spectroscopic titration, 
suggesting negligible binding. 
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Such a low binding affinity (–∆G = 1.3 kcal/mol) is entirely unsatisfactory.  Weak 

binding may have resulted from tight intramolecular aggregation among the cholate units of 1a.  

This is quite possible, because the cholate groups are very close to one another.  Intramolecular 

aggregation, nevertheless, does not seem to cause any problems in the reversed-micelle-like 

conformer, as the hydrophilic guests are bound with reasonable strength.  This contrast is likely 

due to the curvature of the cholate backbone, which is bent toward the hydrophilic α face and is 

expected to prevent tight aggregation of the α faces in the reversed-micelle-like conformer. 

 

Scheme 1. Synthesis of the water-soluble amphiphilic basket 3.

 

OH OHOH OH
3

a

O OO O

O2N NO2 NO2 NO2

R R RR

5, R = (CH2CH2O)4CH3

O OO O

O O O O

4

O O O O

b, c, d

e

O OO O

H2N NH2 NH2 NH2

R R RR
6, R = (CH2CH2O)4CH3

O OO O

NH NH HN NH

HO
HO

H3N

O

HO
HO

H3N

O

OH

NH3

OH

O

OH

NH3

OH

O

R R R R

Cl

2, R = (CH2CH2O)4CH3

ClCl
Cl

f, g, h

OHOH
N3

O

OH

7  



www.manaraa.com

 63

Reaction conditions: (a) K2CO3, ethyl bromoacetate, refluxing acetone; (b) LiAlH4, THF; (c) 

NaH, MsO(CH2CH2O)3CH3, DMF; (d) HNO3, HOAc, CH2Cl2; (e) SnCl2, refluxing MeOH; (f) 

BOP, DIPEA, 7, DMF; (g) PPh3, THF, H2O; (h) HCl, MeOH. 

 

When the solvent is changed from methanol/water (80/20) to pure methanol, the methyl 

proton signals on the cholates no longer experience any shifts with the addition of 1-

aminopyrene, suggesting negligible binding (entry 2 of Table 2).  Hence, solvophobic 

interaction is also the main driving force in this conformer.18  Encouraged by this fact, we 

decided to prepare a water-soluble version of the amphiphilic basket. 

The cationic host 2 is prepared according to Scheme 1.  To increase the water-solubility 

of the calixarene, we attached oligomeric ethylene glycol chains to its lower rim.  A literature 

procedure describes direct attachment of triethylene glycol monomethyl ether to tert-

butylcalix[4]arene 3 under standard alkylation conditions (i.e., NaH, RBr).19  However, the 

cone-conformer was one of four products formed.  In our synthesis, we have avoided this 

problem by using ester 4 as the key intermediate.  Ester 4 is prepared in a high yield according 

to a literature procedure, and, most importantly, is already in the cone-conformation.10  It was 

reduced by lithium aluminum hydride, alkylated by the mesylate of triethylene glycol 

monomethyl ether, and nitrated to afford 5 in an overall 54% yield.  The azidocholic acid (7)20 

is coupled to amine 6, and the resulting product is reduced and protonated to afford the final 

water-soluble basket 2.  
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Figure 4. Solubilization of anthracene (□ ), pyrene (◆), and perylene (■ ) in water by 2.  

Theoretical lines are line fitting of the experimental data. 

 

With the water-soluble basket 2 in hand, we performed solubilization of anthracene and 

perylene, in addition to pyrene.  These polycyclic aromatic hydrocarbons have extremely low 

solubility in water; thus, their binding can be monitored by enhanced solubilization.  The 

experiment is similar to the dye-solubilization test used in the characterization of the critical 

micelle concentration (CMC) of surfactants.22  In these experiments, a hydrophobic dye, which 

has nearly zero solubility in water below the CMC, is solubilized by surfactant micelles above 

the CMC.  When the concentration of the solubilized dye is plotted against the concentration of 

the surfactant, a kinked curve is therefore obtained, with the inflection point corresponding to 

the CMC.  In fact, pyrene has been frequently used to determine the CMC of surfactants 

because of its low water-solubility and fluorescence (which allows for its sensitive detection).23 

Solubilization of the aromatic compounds by basket 2 clearly does not follow the 

pattern of typical surfactants.  Instead of a kinked curve, the concentration of the solubilized 

polycyclic aromatics is linearly related to the concentration of 2 (Figure 4).  The absence of a 
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concentration dependence in the solubilizing power suggests that aggregation is not necessary 

for 2 to solubilize hydrophobic guests.  In other words, 2 does not have a CMC and truly 

qualifies as a unimolecular micelle.  Our experiments indicate that basket 2 is most efficient in 

solubilizing pyrene, followed by anthracene and perylene.  More efficient solubilization, 

nonetheless, does not mean stronger binding, because the amount of the solubilized guest also 

depends on the solubility of the guest by itself.  For 1:1 complexation,24 the binding constant 

can be calculated from these dye-solubilization experiments according to the following 

equation:25  

s = s0 + {Kas0 / (1 + Kas0)}[host] 

in which s0 is the solubility of the guest in the absence of any host, s is the solubility of the 

guest at a given host concentration [host], and Ka is the binding constant.  Because s0 has an 

extremely large effect on the calculation of Ka, but cannot be determined accurately at the 

intercept, we used the literature values instead (s0 = 0.45, 0.67, and 0.0016 µM) for these 

anthracene, pyrene, and perylene, respectively.26  The binding constants (Ka) obtained for three 

aromatic compounds are extremely large: 7.8 × 103, 5.0 × 104, and 6.8 × 105 M–1 for anthracene, 

pyrene, and perylene (entries 3, 4, and 5 of Table 2).  Strong binding is probably a result of 

much higher solvophobic driving force in water as compared to aqueous methanol.  It may also 

be due to poor intramolecular aggregation among the cholates, which are now positively 

charged.  These binding constants correspond to –∆G of 5.3, 6.4, and 8.0 kcal/mol, respectively.  

Therefore, the binding affinity increases linearly with the size of the aromatic guests.  Such a 

trend is consistent with the solvophobic binding mechanism, because the strength of the 

solvophobic interaction is directly proportional to the area of the solvophobic surface removed 

from solvent contract during complexation.4   
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Conclusions 

In summary, we have shown that judicious introduction of conformational flexibility 

converts an otherwise simple host into a novel environmentally responsive molecule.  The 

binding properties respond to solvent changes as the host undergoes conformational changes.  

The reversed-micelle-like conformer prefers hydrophilic guests in solvent mixtures consisting 

of mostly a nonpolar solvent with a small amount of a polar solvent.  Preferential solvation of 

the hydrophilic faces of the cholate groups by the polar solvent is important to the stability of 

the reversed-micelle-like conformer.  Too strong solvation, however, leads to weak binding, 

because the polar solvent molecules entrapped by the host cannot be easily displaced by the 

guest.  The micelle-like conformer binds hydrophobic guests in polar solvents.  Binding is 

weak for 1-aminopyrene (–∆G < 1.5 kcal/mol) in a methanol/water (80/20) mixture.  In pure 

water, however, very strong binding (–∆G = 5–8 kcal/mol) is observed for anthracene, pyrene, 

and perylene. 

 

Experimental Section 

General Methods   

Anhydrous tetrahydrofuran (THF) and methylene chloride were dried by passage 

through a column of activated alumina under compressed nitrogen.  Cholic acid was 

crystallized from 95% ethanol and dried at 90 °C under vacuum.  All other reagents and 

solvents were of A.C.S. certified grade or higher, and were used as received from commercial 

suppliers.  All glassware and syringes were dried in an oven at least overnight prior to use.  All 

aqueous solutions for the dye solubilization measurements were prepared using Millipore water. 
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Synthesis 

Compound 1a.  Compound 1a was synthesized according to a literature procedure.30  

1H NMR (CD3OD, 300 MHz, δ) 7.00 (d, J = 2.4 Hz, 4H), 6.84 (d, J = 2.4 Hz, 4H), 4.54 (d, J = 

12.6 Hz, 4H), 4.12 (t, J = 5.7 Hz, 8H), 3.96 (s, 4H), 3.90 (t, J = 5.4 Hz, 8H), 3.80 (s, 4H), 2.40–

0.90 (series of m, 120H), 0.72 (s, 12H); 13C NMR (CD3OD, 75 MHz, δ) 173.4, 152.8, 135.0, 

133.0, 120.9, 73. 8, 73.7, 73.57, 72.9, 72.8, 71.8, 71.7, 69.8, 67.9, 66.3, 46.4, 44.4, 42.0, 41.8, 

39.9, 39.3, 38.1, 36.3, 36.0, 35.6, 35.4 (two peaks), 34.8, 34.0, 32.0, 31.1, 30.8, 30.1, 28.5, 27.9, 

27.7, 27.6, 26.7, 23.23, 23.18, 22.3, 17.0, 16.6, 14.8, 12.2, 12.1.  MALDI-TOFMS:  

[M+Na]+calcd. for C140H212N4 NaO24: 2358.2; found: 2358.3. 
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Compound 8.  This aminocalixarene was synthesized according to a literature 

procedure.31  1H NMR (CDCl3, 300 MHz, δ) 6.07 (s, 8H), 4.29 (d, J = 13.2 Hz, 4H), 3.74 (t, J = 

7.6 Hz, 8H), 2.90 (d, J = 13.2 Hz, 4H), 1.90–1.80 (m, 8H), 1.45–1.13 (m, 24H), 0.89 (t, J = 7.2 

Hz, 12H). 
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Compound 1b.  A mixture of cholic acid (195 mg, 0.48 mmol), 8 (74 mg, 0.10 mmol), 

and N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide (EDCI) hydrogen chloride salt (109 mg, 

0.57 mmol) were stirred in anhydrous CH2Cl2 (5 mL) at room temperature under N2 for 24 h.  

Solvent was evaporated in vacuo.  The residue was dissolved in methanol (0.5 mL) and 

precipitated in water (5 mL).  The product was purified by column chromatography over silica 

gel using MeOH/CH2Cl2 (1/10) as eluents to give a light yellow powder (155 mg, 70 % yield). 

1H NMR (CD3OD, 300 MHz, δ) 6.97 (d, J = 2.4 Hz, 4H), 6.82 (d, J = 2.4 Hz, 4H), 4.44 (d, J = 

12.0 Hz, 4H), 4.96 (s, 4H), 3.88 (t, J = 6.6 Hz, 8H), 3.80 (s, 4H), 3.37 (m, 4H), 3.11 (d, J = 12.0 

Hz, 4H), 2.40–0.90 (m, 120H), 0.72 (s, 12H); 13C NMR (CD3OD, 75 MHz, δ) 173.6, 153.3, 

135.1, 132.3, 121.0, 75.6, 73.1, 71.7, 68.2, 47.1, 46.5, 41.8, 41.8, 39.73, 39.72, 39.3, 35.9, 35.4, 

34.9, 34.0, 32.3, 32.0, 30.4, 30.1, 28.4, 27.7, 26.6, 26.2, 23.34, 23.32, 23.0, 22.4, 17.1, 13.8, 

12.4;  MALDI-TOFMS: [M+Na]+ calcd. for C148H228N4NaO20: 2405.7; found: 2405.7. 

Compound 4. 32  t-Butylcalix[4]arene 3 (5.02 g, 7.7 mmol), ethyl bromoacetate (12.8 g, 

77 mmol), and K2CO3 (10.6 g, 77 mmol) were combined with dry acetone (100 mL).  The 

reaction mixture was heated to reflux for 5 days.  After the mixture was cooled to room 

temperature, the solid was filtered and washed with acetone (10 mL).  The combined organic 

solution was concentrated in vacuo.  The oily residue was crystallized from ethanol to give a 

white powder (5.84 g, 76% yield).  1H NMR (CDCl3, 300 MHz, δ) 6.77 (s, 8H), 4.85 (d, J = 

12.6 Hz, 4H), 4.80 (s, 8H), 4.21 (q, J = 7.2 Hz, 8H), 3.19 (d, J = 12.6 Hz, 4H), 1.29 (t, J = 7.2 

Hz, 12H), 1.07 (s, 36H). 

Compound 9.33  Methanesulfonic acid (3.2 mL, 7.81 mmol) was added by a syringe to 

a solution of methyl cholate (10.0 g, 24 mmol) and PPh3 (18.8 g, 72 mmol) in anhydrous THF 

(120 mL).  The reaction mixture was warmed to 40–50 °C.  Diisopropyl azodicarboxylate (14.0 
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mL, 72 mmol) was added dropwise by a syringe over a 15 minute period.  The mixture was 

stirred for 24 h at 40–50 °C under N2.  The mixture was cooled to room temperature and the 

white solid (mostly triphenylphosphine oxide) was removed by filtration.  The filtrate was 

concentrated in vacuo and purified by flash chromatography over silica gel using 

EtOAc/hexane (3:1) as the eluent to afford a viscous oil (slightly impure).  The oil was 

dissolved in 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU, 50 mL).  Sodium 

azide (4.7 g, 72 mmol) was added.  The reaction mixture was stirred at 50 °C for 9 h.  The 

mixture was poured into water (100 mL) and extracted with ethyl acetate (2 × 50 mL).  The 

combined organic phase was washed with water, dried over MgSO4, filtered, concentrated by 

rotary evaporation, and purified by column chromatography over silica gel using 

EtOAc/hexane (1:4) as the eluent to afford a viscous oil (4.59 g, 45% yield).  1H NMR (300 

MHz, CDCl3, TMS, δ) 3.99 (s, 1H), 3.86 (s 1H), 3.67 (s, CO2CH3, 3H), 3.09–3.22 (m, 1H), 

1.34–2.36 (series of m, 27H), 0.96–0.98 (d, J = 8.7 Hz, 3H), 0.91(s, 3H), 0.69 (s, 3H); 13C 

NMR  (75 MHz, CDCl3, δ) 175.0, 73.2, 68.5, 61.5, 51.7, 47.4, 46.8, 42.1, 42.0, 39.6, 35.7, 35.6, 

35.5, 35.0, 34.8, 31.2, 31.0, 28.4, 27.7, 27.0, 26.8, 23.4, 22.8, 17.5, 12.7.   

Compound 5.  Compound 4 (2.194 g, 2.21 mmol) was dissolved in anhydrous THF (20 

mL).  Lithium aluminum hydride (1.0 M in ether, 11.2 mL, 11.2 mmol) was added by a syringe.  

The mixture was stirred at room temperature under N2 for 3.5 h.  The reaction was quenched by 

slow addition of EtOAc (5 mL), followed by 6 N HCl (20 mL) and brine (20 mL).  The 

aqueous layer was extracted with ether (40 mL).  The combined organic phase was dried 

(MgSO4/K2CO3), concentrated in vacuo, and pumped dry at 70 °C.  The alcohol intermediate 

(1.765 g) was combined with MsO(CH2CH2O)3CH3
26 (5.400 g, 22.3 mmol), and Bu4NI (0.077 

g, 0.21 mmol) in anhydrous THF (50 mL).  NaH (60%, 0.912 g, 22.8 mmol) was added in one 



www.manaraa.com

 70

portion.  The mixture was heated to reflux under N2 for 23 h.  Another batch of the mesylate 

(1.07 g, 2.42 mmol) and NaH (0.205 g, 5.13 mmol) was added.  After another 4.5 h, the 

reaction was cooled to room temperature and quenched by the careful addition of water (10 

mL).  The mixture was extracted with ether (40 mL).  The combined organic phase was dried 

(MgSO4) and concentrated in vacuo.  The residual oil was dissolved in CH2Cl2/HOAc (20 

mL/20 mL) and cooled to 0 °C.  Nitric acid (90%, 10 mL) was added slowly.  The solution was 

stirred at room temperature for 3 h, diluted with chloroform (30 mL) and water (60 mL).  The 

organic phase was evaporated in vacuo.  The residue was purified by column chromatography 

over silica gel using chloroform/acetone (1/1) as the eluent to give an orange oil.  1H NMR 

(400 MHz, CDCl3, δ) 7.42 (s, 8H), 4.57 (d, J = 14.0 Hz, 4H), 4.16 (br s, 8H), 3.72 (br s, 8H), 

3.55–3.40 (m, 48H), 3.30 (d, J = 14.0 Hz, 4H), 3.24 (s, 12H); 13C NMR  (100 MHz, CDCl3, δ) 

162.0, 142.9, 135.9, 124.0, 77.7, 74.6, 72.0, 70.72, 70.68, 70.6, 70.5, 59.1, 31.2.  ESI-MS (m/z): 

[M + K + H]2+ calcd for C64H93N4KO28, 702.5; found, 702.0. 

Compound 6.  A solution of compound 5 (412 mg, 0.302 mmol) and SnCl2·2H2O (857 

mg, 2.80 mmol) in MeOH (15 mL) was heated to reflux for 24 h.  NaOH (2 N, 30 mL) was 

added.  The aqueous layer was extracted with chloroform (3 × 40 mL).  The combined organic 

phase was washed with brine (20 mL), dried (MgSO4), filtered, and concentrated in vacuo to 

give a brown oil (337 mg, 90% yield).  1H NMR (400 MHz, CDCl3, δ) 5.97 (s, 8H), 4.23 (d, J = 

13.2 Hz, 4H), 3.90 (t, J = 5.6 Hz, 8H), 3.75 (t, J = 5.6 Hz, 8H), 3.65–3.46 (m, 48H), 3.30 (s, 

12H), 2.82 (d, J = 13.2 Hz, 4H); 13C NMR (100 MHz, CDCl3, δ) 149.7, 140.8, 135.6, 115.8, 

73.0, 72.1, 70.8, 70.7, 70.5, 59.2, 31.3.  ESI-MS (m/z): [M + H]+ calcd for C64H101N4O20, 

1245.5; found, 1246.0; [M + 4K]4+ calcd for C64H100N4K4O20, 350.3; found, 350.0. 
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Compound 7.  LiOH (2M, 45 ml, 90 mmol) was added to the solution of compound 9 

(4.0 g, 8.95 mmol) in methanol (50 mL).  The mixture was stirred at room temperature for 21 h.  

HCl (2N) was added until pH = 4–5.  The mixture was extracted ethyl acetate (2 × 80 mL).  

The combined organic phase was washed with water, dried over MgSO4, and concentrated in 

vacuo to afford a white powder (3.73 g, 96% yield).  1H NMR (300 MHz, CDCl3/CD3OD = 1:1, 

δ)  4.01 (br s, 1H), 3.87 (br s, 1H), 3.28–3.12 (m, 1H), 2.49–1.06 (series of m, 27H), 1.05 (d, 

3H), 0.92 (s, 3H), 0.69 (s, 3H). 

Compound 2.  Compound 7 (110.3 mg, 0.254 mmol), compound 6 (63.3 mg, 0.0508 

mmol), and O-benzotriazol-1-yl-N,N,N´,N´-tetramethyluronium hexafluorophosphate (HBTU, 

97.6 mg, 0.257 mmol) were dissolved in anhydrous THF (3 mL).  Diisopropylethylamine (91.6 

mg, 0.709 mmol) was added.  The mixture was heated to reflux under N2 for 24 h.  Solvent was 

evaporated in vacuo.  The residue was purified by column chromatography over silica gel and 

preparative TLC using chloroform/methanol (15/1) as the eluent to afford a brown glass.  The 

tetraazide intermediate and triphenylphosphine (41.0 mg, 0.156 mmol) was dissolved in 

THF/water (80/20, 2 mL).  The mixture was heated to reflux for 14 h.  Another batch of 

triphenylphosphine (39.5 mg) was added.  The reaction was continued for another 6 h.  Solvent 

was removed in vacuo.  The residue was purified by preparative TLC using 

chloroform/methanol/ammonium hydroxide (5/3/1) as the developing solvents to afford a light 

brown glass (24.3 mg, 19%).  1H NMR  (400 MHz, CD3OD, δ) 6.99 (s, 4H), 6.87 (s, 4H), 4.57 

(d, J = 12.8 Hz, 4H), 4.15 (b, 8H), 4.02–3.91 (m, 12H), 3.80 (s, 4H), 3.71-3.46 (m, 48H), 3.34 

(s, 12H), 3.12 (d, J = 12.8 Hz, 4H), 2.77 (t, J = 10.4 Hz, 4H), 2.44–1.01 (series of m, 108H), 

0.95 (s, 12H), 0.72 (s, 12H);  13C NMR  (75 MHz, CD3OD, δ) 173.4, 153.0, 135.1, 135.0, 132.8, 

120.8, 120.7, 73.5, 72.6, 71.8, 70.6, 70.4, 70.2, 67.5, 58.0, 51.5, 47.1, 46.4, 41.9, 41.8, 39.9, 
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36.0, 34.9, 34.6, 34.5, 34.3, 33.9, 31.9, 31.1, 29.6, 28.5, 27.7, 26.8, 25.7, 23.1, 22.0, 16.7, 12.1.  

MALDI-TOFMS (m/z): [M + H]+ calcd for C160H257N8O32, 2803.78; found, 2811.15.  The glass 

was dissolved in MeOH (2 mL).  An excess of HCl in MeOH (prepared by addition of acetyl 

chloride to MeOH)28 was added.  After 1 h, the solvent and HCl were evaporated by a gentle N2 

flow.  The white solid was pumped under high vacuum to afford a light brown power. 

Job Plot.  Stock solutions (1.43 mM) of 1a and phenyl β-D-glucopyranoside in carbon 

tetrachloride/deuterated methanol (90/10 = v/v) were prepared.  In eleven separate NMR tubes, 

portions of the two solutions were added such that their ratios changed from 0 to 1, while 

maintaining a total volume of 0.6 ml. A 1H NMR spectrum was taken for each sample.  The 

changes in the chemical shifts of the ortho, meta, and para-protons of the phenyl in the guest 

were monitored.  The maximum at 0.5 molar fraction indicated a 1:1 binding stoichiometry. 

1H NMR Spectroscopic Titrations. For the binding of hydrophilic guests, the guest 

was titrated with different amounts of the host, and the chemical shifts of the phenyl protons in 

the guest were monitored.  For binding of the hydrophobic guests, the host was titrated with 

different amounts of the guest, and the chemical shifts of the methyl protons in the host were 

monitored.  A typical procedure is as follows.  Stock solutions of 1a (0.050 M) and phenyl β-

D-glucopyranoside (0.010 M) in CH3OH were prepared.  To 16 separate vials, 60 µL of the 

phenyl β-D-glucopyranoside solution was added, followed by 12, 16, 19, 23, 27, 31, 37, 43, 50, 

58, 67, 79, 93, 111, 136 and 170 µL of 1a.  The solvent in each vial was removed in vacuo.  

Then 600 µL of CCl4/CD3OD (90/10) was added to each vial.  The samples were gently shaken 

for 1 h and then transferred to 16 separate NMR tubes.  A 1H NMR spectrum was taken for 

each sample and the chemical shifts of the phenyl protons of the guest were measured.  The 
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binding constants (Ka) were obtained by least-square nonlinear curving fitting of the titration 

data. 

Dye solubilization.  A typical procedure is as follows.  A stock solution (2.96 mM) of 2 

was prepared in Millipore water.  To eleven separate vials, 500, 450, 400, 350, 300, 250, 200, 

150, 100, 50, and 10 µL of stock solution were added.  Millipore water was added to make the 

total volume of each sample 500 µL.  These solutions were gently rocked in the presence of 

excess solid pyrene for three days.  The excess pyrene was removed by filtration through 

syringe filters [Milipore Millex hydrophilic poly(tetragluoroethylene) filters, 0.45 µm].  An 

aliquot of 100 µL of each sample was diluted with 2.5 mL of absolute ethanol.  The 

fluorescence intensity of each sample was measured in a quartz cuvet.  Each experiment was 

repeated three times with separately prepared solutions.  The concentration of the solubilized 

pyrene was determined by a calibration curve.  The excitation wavelength was 340, 320, and 

400 nm for anthracene, pyrene, and perylene, respectively. 
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CHAPTER 5. An amphiphilic molecular basket sensitive to both 
solvent changes and UV irradiation 

 

A paper accepted in The Journal of Organic Chemistry 20061

 

Abstracts 

A molecular basket was obtained by linking four cholate units to a cone-shaped 

calix[4]arene scaffold through azobenzene spacers.  The molecule turned its polar faces inward 

in nonpolar solvents to bind polar molecules, such as sugar derivatives.  In polar solvents, the 

nonpolar faces turned inward, allowing the binding of hydrophobic guests, such as pyrene.  The 

molecule could also respond to UV irradiation by trans-cis isomerization of the azobenzene 

spacers.  Response toward both solvents and UV light was fully reversible. 

 

Introduction 

Conformational control is a powerful approach to environmentally responsive materials, 

because the conformation of a molecule dictates many of its properties including size, shape, 

and distribution of functional groups, and yet may be altered easily by environmental stimuli.  

The interest in conformationally controlable molecules is highlighted in foldamer research, 

which aims at creating synthetic analogues of biopolymers that can adopt well-defined, 

compact conformations.2  A benefit in creating responsive materials based on conformational 

changes is the possibility to integrate conformational responsiveness with other responsive 

mechanisms, so that materials sensitive to multiple stimuli may be rationally designed.  We 

have been interested in using cholic acid as a building block to construct conformationally 



www.manaraa.com

 80

controllable foldamers3 and nonfoldamers.4  We reported a “molecular basket” 1 that can 

reversibly switch between a micelle-like conformation (with the hydrophilic faces of cholates 

point outward) in polar environments and a reversed micelle-like conformation in nonpolar 

environments.4a,5  As a result of the conformational change, the molecule can act as a tunable 

supramolecular host to bind polar guests in nonpolar solvents and nonpolar ones in polar 

solvents.4b  As the ordered, micelle- or reversed-micelle-like conformations originate from 

intramolecular aggregation of the cholates, we reasoned that insertion of azobenzene6,7 linkers 

would create a molecular basket 2 sensitive to both solvents and photoirradiation.  The idea is 

that aggregation should be promoted by the straight trans azobenzene spacers but deteriorated 

by the kinked cis isomers.  Complete cis-isomerization is probably unnecessary, as mixed 

trans/cis spacers, may be even worse for the alignment of the cholates than all cis ones.  A 

similar concept also has been employed recently by the groups of Hecht8 and Parquette9 to 

prepare foldamers sensitive to both solvents and UV irradiation.  
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Azobenzene-derived calixarenes have attracted considerable interest from 

supramolecular chemists,10 ever since Shinkai and co-workers discovered the autoaccelerative 
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diazo coupling of calix[4]arene.11  Many calixarenes with azobenzene at the upper rim have 

been prepared according to Shinkai’s method.12  To ensure a basket-like conformation, we 

prefer to have the calix[4]arene scaffold preorganized into the cone conformation by alkyl 

substitution at the lower rim.4a  However, with one exception,12e nearly all of the previously 

reported azocalixarenes have unsubstituted hydroxyl groups para to the azobenzene groups.  

 

Results and discussion 

The synthesis of 2 is illustrated in Scheme 1.  Tetraaminocalix[4]arene (4) was prepared 

according to a literature procedure.13  It was diazotized by nitrous acid at 0 °C in aqueous THF 

to afford the tetradiazonium intermediate 5, which was reacted directly with an excess of 

phenol in THF and pyridine.  Considering the instability of the highly crowded tetradiazonium 

salt, the yield of this reaction was remarkably high, over 70% if the reaction conditions were 

properly controlled.  Precooling of all solutions (i.e., both 4/NaNO2 in aqueous THF and the 

aqueous HCl solution added to the first mixture) was extremely important. A slight increase in 

reaction temperature during diazotization could reduce the yield from >70% to <10%.  The 

tetraphenol intermediate 6 was generally used in the next step without much purification.  

Alkylation with brominated cholate derivative 7 occurred smoothly in about 60% yield.  In 

addition, compound 3 with a single cholate unit was prepared as a control.  We did attempt an 

alternative route and prepared compound 8.14  Its alkylation to cone-shaped calixarene, 

however, was unsuccessful.  
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Scheme 1. Synthesis of compound 2. 
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Reaction conditions: (a) NaNO2, HCl, H2O, THF; (b) phenol, pyridine, THF; (c) 7, K2CO3, 

Bu4NI, DMF. 

 

The aromatic protons of 1 ortho to the amido groups appeared as a single peak when the 

molecule adopted a random conformation, but split into two peaks as the molecule assumed 

either the micelle- or reversed-micelle-like conformation.4a,4c  Such a change was not observed 

in 2, but the result was expected.  Splitting of the aromatic peaks probably originated from 

hindered rotation of the N-Ar bonds15 during intramolecular aggregation of the cholates,4a and 

was previously found to be absent whenever spacers were inserted in between the cholates and 

the calixarene or noncalixarene scaffold.4c  
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Figure 1.  (a) Changes in the 1H NMR chemical shifts of OH3 as a function of the solvent 

composition in mixtures of DMSO-d6/CCl4 for compounds 1 ( ), 2 ( ), and 9 ( ). OH3 is the 

hydroxyl group on the A-ring of the steroid backbone. (b) The Job plots for the binding 

between 2 and phenyl β-D-glucopyranoside (10), in which χ is the molar fraction of the guest.  

The chemical shift changes (∆δ) are for the para proton of 10. 

 

Another way of studying the conformation of these baskets is to monitor the chemical 

shifts of the OH (or NH for 1) protons during solvent titration.  When the changes in chemical 

shift of the OH protons are plotted as a function of the DMSO percentage in CCl4, the curves 

for the compounds capable of adopting the reversed-micelle-like conformation show distinct 

downward deviation from the control curve for a monomeric cholate, such as 9.4c  Such a 

deviation indicates a higher local concentration of DMSO near the OH protons than that in the 

bulk, and is a consequence of the reversed micelle-like conformer, which enriches DMSO from 

the solvent mixture by its inwardly facing polar groups.  Although not as significant as in 

compound 1 ( , Figure 1a), a downward deviation was clearly visible for 2 below 20% DMSO 

( ).  
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We also studied the conformation of 2 through its guest-binding properties.  In 5% 

CD3OD/CCl4, a mostly nonpolar mixture, 2 binds phenyl β-D-gluocopyranoside (10) with an 

association constant (Ka) of 380 ± 130 M–1. Over the range of concentrations used for the 1H 

NMR spectroscopic titration, the proton signals of the host showed no sign of broadening, 

indicating a lack of self-association.  Binding was confirmed to be 1:1 by the Job plot (Figure 

1b). This binding constant was essentially the same as that between 1 and 10 (Ka = 340 ± 60 M–

1).2d  With extensive aromatic components (i.e., azobenzene) in the structure, binding by 2 

should benefit from additional π−π interactions.  Indeed, the binding constant (Ka = 700 ± 150 

M–1) almost doubled for guest 11, which had a larger aromatic group than 10, but otherwise 

shared the same hydrophilic substructure.  The binding of polar molecules in a nonpolar 

mixture indicated that, similar to the parent basket 1, azobasket 2 adopts a reversed micelle-like 

conformation.  

Pyrene (12) was found to be a suitable guest for the micelle-like conformer.4b  Its 

binding by 2 was evidenced by upfield shifts of the methyl protons on the hydrophobic faces of 

the cholates.  Even though Ka was quite low, only about 5–10 M–1 in methanol for both 2 and 1, 

binding with pyrene through the hydrophobic faces of the cholates did support the formation of 

micelle-like conformations in polar solvents.  Previously, it was shown that much stronger 

binding could be obtained once the basket was made water-soluble to create a higher 

hydrophobic driving force.4b       
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Figure 2. UV spectra of compounds (a) 2 and (b) 3 recorded at 0, 10, 20, 30, 40, 50, and 60 

min, and then at 24 h after UV irradiation. The spectra at 24 h were nearly identical to those 

before irradiation. [Azobenzene] = 0.15 mM. Solvents = 5% MeOH/CCl4 in both cases. 

 

Azobasket 2 displayed a π−π* transition near 350 nm and a very weak n−π* band at 

450 nm in the UV spectrum.  With 2 irradiated by 360 nm UV light for five minutes, the π−π* 

band lost about 40% of the initial intensity, while the n−π* band grew stronger (Figure 2a), 

indicative of trans–cis isomerization.6,7  Similar changes could be observed for the control 3, 

but the extent of isomerization was much higher in this compound, as its π−π* band almost 

completely disappeared and was replaced by a peak near 310 nm assigned to the cis-isomer 

(Figure 2b).6,7  The lower conversion in 2 probably did not come from its conformational 

preference, because similar situations occurred in other solvents (i.e., 50/50 or 95/5 

methanol/CCl4) that favored the random and micelle-like conformations.  It seems that 

solvophobic forces were not strong enough to significantly influence the much higher energy 

photochemical process.  Both compounds completely revert back to all trans configurations 

after 24 h in the dark. Recovery is again slower in 2 than in the monomeric control.  Since 
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solvophobic interactions should help the all trans structure of 2, its slower kinetics must be 

caused by factors (e.g., steric crowdedness) other than its conformational properties.   

 

Figure 6.  Portions of the 1H NMR spectra of compound 2 (a) before, (b) immediately after, 

and (c) at 24 h in the dark after irradiation.  The peaks between 3.3–4.1 ppm are from protons 

adjacent to the OH and O in 2. The large peaks at 3.3 and 4.8 ppm come from undeuterated 

solvents.  Solvent = 5% CD3OD/CCl4. 

 

We also monitored the photoisomerization by 1H NMR spectroscopy.  Portions of the 

spectra for 2 are shown in Figure 3.  Before irradiation, the aromatic region showed two 

doublets at ca. 6.7 & 7.5 ppm for the protons on the top aromatic rings and a single peak at 7.3 

ppm for the bottom calixarene aromatic protons.  The aromatic protons became extremely 

complex after UV irradiation (Figure 3b).  At the same time, (part of) the AB quartet for the 

calixarene methylene bridge (ArCH2Ar) at 4.6 ppm disappeared completely.  It is unlikely that 

UV irradiation will change the preorganized cone-conformation of the calix[4]arene.  
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Disappearance of the ArCH2Ar signals probably happened as numerous configurational 

isomers were generated by partial conversion of the trans to the cis azobenzene.  Importantly, 

the original spectrum recovered completely after 24 h in the dark, demonstrating the 

reversibility of the process. 

 

Conclusions 

In summary, we have combined the photoisomerization of azobenzene with solvent-

induced conformational change, and synthesized a molecular basket (2) that showed dual 

responsive properties.  Much improvement is still needed before it can be used as a smart 

delivery vehicle.  The result, nonetheless, demonstrates that it is feasible to integrate 

conformational control with other switching mechanisms and rationally design materials 

responsive to multiple signals. 

 

Experimental Section 

General Methods 

Anhydrous tetrahydrofuran (THF) and methylene chloride were dried by passage 

through a column of activated alumina under compressed nitrogen.  Cholic acid was 

crystallized from 95% ethanol and dried at 90 °C under a vacuum.  All other reagents and 

solvents were of A.C.S. certified grade or higher, and were used as received from commercial 

suppliers.  All glassware and syringes were dried in an oven at least overnight prior to use.    

 

Synthesis 

Compound 1.  The synthesis of compound 1 was reported previously.16  
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Scheme 1. Synthesis of compound 3. 
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Reaction conditions: (a) LiAlH4, THF; (b) CBr4, PPh3, THF; (c) 7, K2CO3, DMF. 

 

Compound 13.  Compound 13 was synthesized according to a literature procedure.17  

mp 221-223 °C;  1H NMR (300 MHz, CD3OD, δ) 3.96 (s, 1H), 3.80 (m, 1H), 3.51 (t, J =6.3 Hz, 

2H), 3.37 (m, 1H), 2.34-0.91 (m, 30H), 0.72 (s, 3H). 

Compound 7.  Compound 7 was synthesized according to a modified literature 

procedure.17  Compound 13 (1.10 g, 2.79 mmol) and Ph3P (0.89 g, 3.38 mmol) were dissolved 

in anhydrous DMF (15 mL).  CBr4 (1.12 g, 3.38 mmol) was added slowly under a N2 flush. 

After 6 h at rt, the reaction mixture was poured into H2O (100 mL).  The precipitate formed 

was collected by suction filtration and washed with water (2  5 mL).  The final product was 

purified by column chromatography over silica gel using CH2Cl2/acetone as the eluent to give a 

white powder (511 mg, 40% yield).  mp 120-122 oC;  1H NMR (300 MHz, CD3OD, δ) 3.95 (s, 

1H), 3.79 (m, 1H), 3.41 (m, 3H), 2.23-0.91 (m, 30H), 0.72 (s, 3H). 



www.manaraa.com

 89

Compound 4.  Compound 4 was synthesized according to a literature procedure.18  1H 

NMR (300 MHz, CDCl3, δ) 6.07 (s, 8H), 4.29 (d, J = 13.2 Hz, 4H), 3.74 (t, J = 7.6 Hz, 8H), 

2.90 (d, J = 13.2 Hz, 4H), 1.90-1.80 (m, 8H), 1.45-1.13 (m, 24H), 0.89 (t, J = 7.2 Hz, 12H). 

Compound 6. An aqueous HCl solution (3%, 1 mL) was added to a solution of 4 (101 

mg, 0.12 mmol) in THF (4 mL) at 0 °C.  A solution of NaNO2 (43 mg, 0.61 mmol) in H2O (3 

mL) precooled to 0 °C was added slowly by a syringe.  The reaction mixture was stirred at rt 

for 1 h.  A solution of phenol (115 mg, 1.22 mmol) in pyridine (2 mL) and THF (4 mL) was 

added slowly by a syringe at 0 °C.   After 12 h at rt, the reaction mixture was poured slowly 

into H2O (100 mL).  The precipitate formed was collected by suction filtration and washed with 

water (2  10 mL).  The product was dried in vacuo and used in the next step without further 

purification (108 mg, 0.087 mmol, 73 % yield).  1H NMR (300 MHz, CDCl3, δ) 7.48 (d, J = 8.7 

Hz, 8H), 7.28 (s, 8H), 6.68 (d, J = 8.7 Hz, 8H), 4.56 (d, J = 13.2 Hz, 4H), 4.00 (t, J = 7.2 Hz, 

8H), 3.33 (d, J = 9.3 Hz, 4H), 1.98 (m, 8H), 1.48-1.39 (m, 24H), 0.96 (t, J = 6.6 Hz, 12H). 

Compound 2.  Compound 6 (108 mg, 0.087 mmol), 7 (199 mg, 0.44 mmol), K2CO3 

(122 mg, 0.88 mmol), and Bu4NI (10 mg, 0.028 mmol) were mixed with anhydrous DMF (5 

mL).  After 6 h at 50 °C, the reaction mixture was poured slowly into H2O (100 mL).  The 

precipitate was collected by suction filtration and washed with water (2  10 mL).  The 

product was purified by column chromatography over silica gel using CHCl3/methanol as the 

eluent to give a yellow powder (148 mg, 62% yield).  1H NMR (300 MHz, CD3OD/CCl4, δ) 

7.49 (d, J = 8.7 Hz, 8H), 7.28 (s, 8H), 6.69 (d, J = 9.0 Hz, 8H), 4.58 (d, J = 6.9 Hz, 4H), 4.02 (t, 

J = 7.2 Hz, 8H), 3.94 (s, 4H), 3.78 (m, 4H), 3.39 (m, 16H), 2.22–0.90 (m, 120H), 0.70 (s, 12H); 

13C NMR  (75 MHz, CD3OD/CCl4, δ) 161.2, 159.2, 148.3, 146.9, 135.6, 124.3, 123.1, 114.6, 

75.8, 73.1, 71.7, 68.8, 68.3, 58.7, 47.4, 46.5, 41.8, 39.6, 39.3, 35.8, 35.4, 34.9, 34.7, 32.2, 30.5, 
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30.0, 28.3, 27.8, 26.5, 26.2, 23.8, 23.3, 23.0, 22.5, 19.7, 17.5, 14.0, 13.4, 12.5. MALDI-

TOFMS (m/z): calcd. for C172H249N8O20 [M+H]+: 2748.9; found: 2744.5. 

Compound 3.   Compound 14 (50 mg, 0.22 mmol), 7 (100 mg, 0.22 mmol), and K2CO3 

(151 mg, 1.10 mmol) were dissolved in anhydrous THF (10 mL).  The reaction mixture was 

heated to reflux for 12 h.  Solvent was evaporated in vacuo.  The product was purified by 

column chromatography over silica gel using CHCl3/methanol as the eluent to give a yellow 

powder (82 mg, 0.14 mmol, 62% yield).  1H NMR (400 MHz, CD3OD/CDCl3, δ)  7.85 (d, J = 

3.0 Hz, 2H), 7.82 (d, J = 3.0 Hz, 2H), 7.06 (d, J = 5.7 Hz, 2H), 7.03 (d, J = 5.7 Hz, 2H), 4.04 (t, 

J = 6.3 Hz, 2H), 3.97 (s, 1H), 3.88 (s, 3H), 3.80 (m, 1H), 3.37 (m, 1H), 2.21 (m, 3H), 1.97-0.92 

(m, 30H), 0.73 (s, 3H); 13C NMR  (75 MHz, CD3OD/CDCl3, δ) 161.6, 161.3, 146.9, 146.7, 

124.3, 124.3, 114.7, 114.2, 73.0, 71.5, 68.8, 68.3, 55.5, 47.2, 46.3, 41.6, 41.3, 39.3, 39.2, 35.5, 

35.2, 34.7, 34.4, 32.0, 29.8, 28.0, 27.6, 26.3, 25.9, 23.2, 22.4, 17.5, 12.4. MALDI-TOFMS 

(m/z): [M + H]+ calcd for C37H52N2O5: 604.8; found: 605.8. 

Job Plot.  Two stock solutions (1.43 mM) of 2 and phenyl-β-D-glucopyranoside (10) in 

CCl4/CD3OD (v/v = 90/10) were prepared separately.  In eleven separate NMR tubes, portions 

of the two solutions were added such that their ratios changed from 0 to 1 while maintaining a 

total volume of 0.6 mL.  A 1H NMR spectrum was recorded for each sample.   The changes in 

the chemical shifts of the ortho, meta, and para-protons of the phenyl in phenyl β-D-

glucopyranoside were monitored.  The maximum at 0.5 molar fraction indicated a 1:1 binding 

stoichiometry. 

1H NMR Spectroscopic Titrations.  For the binding of 10 and 11, the guest was 

titrated with different amounts of the host, and the chemical shifts of the aromatic protons in 

the guest were monitored.  A typical procedure is as follows.   Stock solutions of 2 (0.050 M) 



www.manaraa.com

 91

and phenyl β-D-glucopyranoside (10) (0.010 M) in CH3OH were prepared.  To 12 separate 

vials, 60 µL of the phenyl β-D-glucopyranoside solution was added, followed by 11, 14, 17, 20, 

24, 29, 34, 39, 46, 54, 63, 74, 88, 106, and 130 µL of 2.  The solvent in each vial was 

completely evaporated.  Then 600 µL of CCl4/CD3OD (v/v = 90/10) was added to each vial.  

The samples were gently shaken for 1 h in dark and then transferred to 12 separate NMR tubes.  

A 1H NMR spectrum was recorded for each sample and the chemical shifts of the phenyl 

protons of phenyl β-D-glucopyranoside were monitored.  The binding constants (Ka) were 

obtained by nonlinear least-squares curve fitting of the titration data. 
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CHAPTER 6. Solvent-responsive metalloporphyrins: binding and 
catalysis 

 
Taken from a paper accepted by Organometallics 20061

 

Abstracts 

 A cholate-functionalized tetraphenylporphyrin (H2CFTPP) was obtained by attaching 

eight cholate units at the meta positions of the phenyl rings.  Zn(CFTPP) favored binding a 

hydrophilic pyridyl ligand over a hydrophobic analogue in nonpolar solvents such as 20% 

MeOH/CCl4, but had the reverse selectivity in 95% MeOH/CCl4.  Tunability of the ligand 

binding resulted from the cholates that aggregated intramolecularly to form either unimolecular 

micelle- or reversed micelle-like structures depending on solvent polarity.  The micelle-like 

structures appear less well organized than the reversed-micelle-like conformations, and might 

be induced by hydrophobic guests.  The solvent-dependent intramolecular aggregation of 

cholates can be used to tune the catalytic activity of an iron porphyrin derivative.  

 

Introduction 

Conformational control is a strategy employed by nature to achieve selectivity and 

regulate activity in enzymes. According to the induced-fit model,2 the substrate of an enzyme 

can “turn on” catalysis by bringing the catalytic groups into proper alignment, whereas a 

nonsubstrate, even having the same reactive group, remains untransformed because it cannot 

induce the necessary conformational change in the enzyme.  Signal molecules—referred to as 

effectors and inhibitors, depending on whether the molecule activates or deactivates the 

catalyst—can alter the conformations of allosteric enzymes and, in consequence, serve to 
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regulate their properties.3  Chemists have long been intrigued by these features of biological 

catalysts but, until now, have not been able to develop a general approach toward 

conformationally controllable catalysts.4  In recent years, there has been great interest in 

developing synthetic oligomers (i.e., foldamers) that can adopt biomolecule-like, folded 

conformations.5  Advancements in conformational control in synthetic molecules will not only 

shed light on how biomolecules fold and function, but also enable the development of synthetic 

counterparts with similar responsive and tunable properties. 

We have been interested in using cholic acid as a building block to construct both 

foldamers6,7 and nonfoldamers8–10 whose conformations and properties can be reversibly 

switched.  With a large steroid backbone that positions hydrophilic and hydrophobic groups on 

opposing faces, cholic acid is uniquely suited for solvophobically driven conformational 

changes.  Previously, we synthesized an amphiphilic “molecular basket” by coupling four 

cholates to a cone-shaped, 4-aminocalix[4]arene scaffold.8  The molecule adopts micelle-like 

conformations in polar solvents with the hydrophilic α faces turned outward and reversed 

micelle-like conformations in nonpolar ones with the α faces inward.11  In this article, we 

extend the concept to construction of a solvent-responsive metalloporphyrin.  Both its binding 

and catalytic properties can be altered using solvent polarity as the stimulant.  Through this 

strategy, substrates that differ by only one or two hydroxyl groups remote from the reactive site 

(i.e., C=C bond) can be clearly distinguished by the metalloporphyrin. 
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Results and discussion 

Design and Synthesis. Metalloporphyrins were chosen as the catalytic platform for 

several reasons.  First, they are important catalysts in both biological and synthetic 

transformations such as olefin epoxidation, alkane hydroxylation, cyclopropanation, and a 

range of other reactions.12  Second, they can tolerate many functional groups and solvents.  

Common polar groups such as hydroxyl, amides, and ethers do not interfere with their catalysis.  

Third, the phenyl groups in tetraphenylporphyrin (H2TPP) 1 are nearly perpendicular to the 

porphyrin plane13 and introduction of functional groups with predictable spatial orientation is 

possible on the phenyl rings.  Hence, for an octacholate-functionalized tetraphenylporphyrin 

(H2CFTPP) 2,14 it is reasonable to expect that the four cholate units can interact 

intramolecularly to create a microenvironment above and below the catalytic site (i.e., 

metalloporphyrin) that can be used to regulate the activity/selectivity of the catalyst.15   
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Scheme 1. Synthesis of H2CFTPP, 2. 
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Reaction conditions: (a) N-HO-Su, DCC, CH2Cl2; (b) NH4OH, DMF; (c) LiAlH4, THF; (d) 

BrCH2CO2Et, K2CO3, acetone; (e) pyrrole, BF3-OEt; (f) DDQ; (g) NaOH; (h) 4, BOP, DIPEA, 

DMF. 

 
H2CFTPP (2) was synthesized using the route shown in Scheme 1.  Cholic acid was 

converted to the N-hydroxysuccinimide ester using dicyclohexylcarbodiimide (DCC) as the 

coupling reagent.  The activated ester was transformed into cholate amide 3, which was 

reduced by LiAlH4 to afford amino cholate 4.  To obtain the octaester porphyrin 6, 3,5-

dihydroxybenzaldehyde was first alkylated with ethyl 2-bromoacetate.  The resulting ester-

substituted benzaldehyde 5 was condensed with pyrrole in the presence of a Lewis acid, 

BF3•OEt2, to afford the desired product 6 in 41% yield.16 After basic hydrolysis of 6, the 

resulting octacarboxylic acid was coupled to amine 4 using benzotriazol-1-

yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP) to afford H2CFTPP (2). 

(The synthesis of 6 and its hydrolysis were performed by Dr. Yibo Zhou in Prof. Keith Woo’s 

group at Iowa State University.)1 
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Binding Properties.  The scaffolds used in all the previously synthesized cholate-

derived molecular baskets were “compact”.8–10  For example, the distance between the two 

opposite amino groups in 4-aminocalix[4]arene is about 6–8 Å according to CPK models.  In 

these structures, close proximity of the cholates allows efficient intramolecular association.  

The TPP scaffold, however, is larger (the distance between the two meta-hydrogens on the 

phenyl rings across the porphyrin is about 15 Å).  Therefore, a potential concern for H2CFTPP 

(2) was whether the cholates could interact intramolecularly to create a microenvironment over 

the two faces of the porphyrin.  Without intramolecular micellization or reversed micellization, 

the cholates would have little effect on the catalytic behavior of the metalloporphyrin.  Another 

possible problem was that a cholate might prefer to interact with the other cholate on the same 

phenyl ring instead of with the other three cholates on the same side of porphyrin face.  In this 

case, intramolecular association of cholates occurs, but in four pairs that probably would not be 

able to significantly influence the catalytic activity.  

N
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7 98  

In order to address these questions, we synthesized three derivatives of 4-aminopyridine 

by acylating the amino group with a hydrophilic (7), a “neutral” (8), and a hydrophobic (9) 

group.  If the proposed intramolecular micellization or reversed micellization does happen, the 
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hydrophilic ligand 7 should be preferred by Zn(CFTPP) in nonpolar solvents and the 

hydrophobic analogue 9 in polar media.  Compound 8 is a control used to investigate the 

general solvent-effect for Zn-pyridine complexation.  Because the different functional groups in 

7–9 are remote and “insulated” from the pyridyl nitrogen by the saturated methylene bridge, 

electronic effects should be negligible in the comparison of the binding of 7–9. 

 

Table 1.  Association constants (Ka, in M–1)a between Zn(CFTPP) and several pyridine guests 

at 20 °C in different solvents.

Solvent Composition 
Guest CCl4/MeOH 

= 5/95 
CCl4/MeOH 

= 20/80 
CCl4/MeOH 

= 40/60 
CCl4/MeOH 

= 60/40 
CCl4/MeOH 

= 80/20 
CCl4/MeOH 

= 90/10 
CCl4/DMSO 

= 90/10 

7 50 ± 10 100 ± 10 100 ± 10 760 ± 340 3100 ± 

1800b ---c --- d

8 5 ± 2 12 ± 1 12 ± 2 15 ± 2 50 ± 2 70 ± 2 130 ± 20 

9 170 ± 50 
90 ± 20 

(80 ± 20) 60 ± 40 90 ± 10 
90 ± 20 

(120 ± 10) 

210 ± 10 

(230 ± 30) 
< 1e

a Determined by UV titrations. Numbers in parentheses were obtained from 1H NMR 
titrations. The errors are from nonlinear least-squares curve fitting. 
b Determined by NMR dilutions.   
c The guest is not soluble in this solvent mixture. 
d Not determined.   
e Binding was too weak to be measurable.   
 

A pyridyl ligand normally complexes with zinc porphyrin in a 1:1 ratio.17  We chose 

pyridyl ligands instead of previously used, generic hydrophilic or hydrophobic guests such as 

phenyl β-D-gluocopyranoside or pyrene9 because the functionalized pyridines can probe the 

environment above/below the metal center.  Generic hydrophilic and hydrophobic guests may 

be bound, but not necessarily near the metal center.  Because minimal amounts of materials 
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could be used in UV spectroscopic studies due to the intense absorption of porphyrin 

derivatives, the majority of data were obtained from UV titrations.  All titration experiments 

were performed at concentrations where intermolecular aggregation was negligible.18  The 

association constants (Ka) between Zn(CFTPP) and 7–9 are summarized in Table 1.  A 1H 

NMR dilution test was used for 7 in 20% MeOH, as the guest was not sufficiently soluble to 

titrate the host. In some cases (e.g., ligand 7 in 40% MeOH), solubility problems prevented 

coverage of a broad range of guest concentrations, and the errors from nonlinear least-squares 

curve fittings were larger than in other cases. In selected cases, both 1H NMR and UV titrations 

were performed, and the results from the two methods generally showed good agreements.  

For the control compound 8, there is a gradual increase of Ka with a decrease of 

methanol in the solvent mixture.  This result is not surprising because alcohol is also a known 

ligand for zinc porphyrin.17  Because CCl4 is a much weaker ligand, an increase in methanol 

makes the solvent better able to compete with 8 for the metal center and reduce its apparent 

binding affinity.  For the hydrophilic ligand 7, changes in Ka are more dramatic, especially with 

more nonpolar solvent mixtures.  For example, Ka is hardly changed in 95, 80, and 60% 

methanol—this is the similar trend observed for 8—but increases by 30-fold over 60–20% 

methanol; yet, over the same range of solvent polarity, the increase is less than 4-fold for 8.  

For the hydrophobic ligand 9, on the other hand, Ka displays an unusual increase toward the 

polar end of solvent composition.  The association constant is 60 M–1 in 60% methanol, but 

increases to 90 M–1 in 80% methanol, and further to 170 M–1 in 95% methanol.  Although these 

changes are not large, they clearly go in opposite trends as compared to those for 7 and 8.  

The general trends in Ka are clear in Figure 1, in which the binding constants are plotted 

on a logarithmic scale against the percentage of methanol in the solvents.  The overall shapes of 

the curves for the hydrophilic ligand 7 and the control 8 are similar, except that the increase in 
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Ka toward the low-MeOH end is more pronounced for the former.  The curve for the 

hydrophobic ligand 9 is quite different (binding is stronger in both the high- and low-MeOH 

solvents, but is weaker in solvents with intermediate polarity). 

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

020406080100

%MeOH

K
a

 

Figure 1.  Plots of Ka between Zn(CFTPP) and 7 ( ), 8 ( ), or 9 ( ) as the function of 

%MeOH in MeOH/CCl4.  The data points are connected to guide the eye. 

 

These binding constants generally seem to be consistent with the predicted 

conformational changes.  As expected, the nonpolar ligand 9 is preferred by Zn(CFTPP) in 

methanol-rich solvents but is less preferred than the hydrophilic ligand 7 in CCl4-rich cases.  In 

addition, the preference in binding is more noticeable at the polar/nonpolar extremes than in the 

intermediate region of the polarity scale.  All these observations suggest that the local 

environment above/below the metalloporphyrin binding site is influenced by the cholates.  

Collective (tetrameric) aggregation of cholates over the two faces of porphyrin is probably 

more reasonable than aggregation in four pairs, as localized aggregation around the peripheral 

phenyl groups is unlikely to significantly influence ligand binding to the zinc center.     
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However, some results are not consistent with our initial predictions.  For example, we 

had predicted that binding of 8 would be stronger than 7 but weaker than 9 in polar, methanol-

rich solvents.  This is because, if indeed a micelle-like conformer is formed, it should repel 7 

from its nonpolar interior. Instead, 8 is found to be a weaker ligand than 7 in methanol-rich 

solvents. Is the micelle-like conformer still formed in Zn(CFTPP)? If not, why is 9 bound more 

strongly than 7 or 8 in polar solvents?  Our previous work9,10 suggests that direct contact of the 

β faces is required for the normal micelle-like conformation—this is similar to micelles of 

surfactants formed through direct contact of the hydrophobic tails.  Such a direct contact, 

however, is less likely to occur over the large face of the porphyrin.  Therefore, the most likely 

possibility is that the micelle-like conformer is not formed in the absence of 9 but is induced by 

its presence.  Hydrophobic binding between 9 and Zn(CFTPP) reduces solvophobic exposure 

of both the guest and the cholate β faces of the host, and thus may have promoted 

intramolecular micellization.  If this is the case, stronger binding of 7 than 8 is understandable.  

With multiple OH/NH groups on both the host and 7, it is easy to imagine that some 

intermolecular hydrogen-bonding interactions, albeit not very strong in solvents such as 95% 

MeOH/CCl4, can make 7 a better ligand.   

With inwardly facing hydrophilic α faces of the cholates, the reversed-micelle-like 

conformer can enrich MeOH solvents within its interior from a mostly nonpolar solvent 

mixture such as 10% MeOH/CCl4.8–10  This is not surprising because reversed micelles formed 

by surfactants often also need to be stabilized by a pool of water molecules in the center.19  For 

this reason, we initially thought, as Zn(CFTPP) adopts the reversed-micelle-like conformation 

with decreasing polarity, the hydrophobic ligand 9 would be “repelled” by the entrapped polar 

methanol.  Yet, its Ka increases from 90 to 210 M–1 when methanol is decreased from 20 to 
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10% (Table 1).  One factor clearly contributing to this unpredicted increase is methanol being a 

competitive ligand for Zn (lower methanol always strengthens binding, as seen in the binding 

of 8 in different MeOH/CCl4 mixtures.  This factor, however, cannot explain why the increase 

in Ka for 9 over 20–10% methanol is even higher than that for 8.  

 Although the behavior of Zn(CFTPP) supports the proposed conformational responses, 

the comparison between 7/9 and the control 8 was unexpected.  Is there another important 

factor not considered?  Since 8 and 7/9 also differ greatly in their size, is it possible that a larger 

guest is inherently preferred over a smaller one?  Note that 8 ( ) is a weaker ligand than 7/9 

( / ) in every MeOH/CCl4 composition (Figure 1).  Polar solvents are known to be enriched 

from the nonpolar environment into the basket during reversed micellization.8–10  During 

binding, some of these polar molecules (methanol in this case) will be displaced by the guest.  

Undoubtedly, larger guests such as 7 and 9 will “release” more solvent molecules than small 

ones (e.g. 8).  This desolvation is favorable on one hand because the solvents are no longer 

constrained locally, but is unfavorable on the other hand because the hydrogen bonds between 

the polar groups (NH/OH) of the cholates and methanol will be broken.  It is entirely possible 

that such release of solvent is overall a favorable process for methanol, especially if methanol is 

only loosely associated with the α faces of the cholates.  

According to our previous studies, DMSO solvates the α faces of cholates more 

strongly than MeOH.6–10 For example, to stabilize the reversed-micelle-like conformer in a 

mixture of polar/nonpolar solvents, DMSO was more effective than methanol as the polar 

component.6.9  The irony is that the same preferential solvation that helps stabilize this 

conformer also makes it an inferior host at the same time, because DMSO is much more 

difficult to be displaced than methanol by the guest. This contrast between DMSO and 
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methanol once again is found in the CFTPP case.  Whereas replacement of 10% methanol by 

DMSO in CCl4 enhances the binding of the control ligand 8 by slightly less than 2-fold, it 

weakens the binding of 9 to the point of nondetection (Table 1).  Apparently, once the reversed-

micelle-like conformer is filled with the strongly associating polar DSMO solvent, the 

hydrophobic guest is indeed “repelled” and becomes a much weaker ligand than the control. 

Therefore, the size of guest can be quite important, especially when significant desolvation 

occurs during the binding process.20  

Overall, these binding studies indicate that the preference for different guests by 

Zn(CFTPP) can be tuned.  Nonpolar guests are preferred in polar solvents and polar guests in 

nonpolar ones.  The reversed micelle-like conformer seems to be better formed than the normal 

micelle-like one. Because the possibility of a guest-induced conformational change always 

exists, the actual conformation of Zn(CFTPP) is not very clear in the absence of guests.  

Nonetheless, it will be interesting to see if the solvent-dependent intramolecular aggregation of 

cholates can be used to regulate catalysis. Solvent-tunable catalysis indeed was demonstrated 

by Dr. Yibo Zhou in Prof. Woo’s group.  Substrates different by one or two hydroxyl groups 

were by distinguished by Fe(CFTPP)Cl in catalytic epoxidation.1

 

Conclusions 

The conformational behavior of the cholate-functionalized porphyrin complex is not as 

well-defined as previously synthesized amphiphilic baskets constructed on “compact” scaffolds 

such as calix[4]arene.  With a large scaffold, solvophobic interactions are less effective at 

controlling intramolecular aggregation of the cholates.  However, even with these more diffuse 

structures, conformational changes can still have significant impact on the binding of the 
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metalloporphyrin derivative.  In a mostly polar mixture, a hydrophobic ligand (9) is preferred 

by Zn(CFTPP), whereas a hydrophilic one (7) is favored in a mostly nonpolar mixture.  

 

Experimental Section 

General Methods   

Chloroform was distilled from anhydrous K2CO3. Anhydrous tetrahydrofuran (THF) 

and methylene chloride were dried by passage through a column of activated alumina under 

nitrogen.  Pyrrole was distilled over CaH2 at atmospheric pressure. Stock solutions of BF3.Et2O 

were prepared by diluting BF3.Et2O (Aldrich, 8.1 M) to 2.5 M in CHCl3 and were used within 2 

weeks.  Cholic acid was crystallized from 95% ethanol and dried at 90 °C under vacuum.  All 

other reagents and solvents were of A.C.S. certified grade or higher and were used as received 

from commercial suppliers.  Details of these syntheses can be found in Supporting Information.  

All glassware and syringes were dried in an oven at least overnight prior to use.  Routine 1H 

and 13C NMR spectra were recorded on a Varian VXR-300 and VXR-400 spectrometer.  

MALDI-TOF mass was recorded on a Thermobioanalysis Dynamo mass spectrometer.  UV-vis 

spectra were recorded at ambient temperature on an HP 8452 Spectrometer.  

 

Synthesis 

Compound 3. 23  Cholic acid (1.07 g, 2.62 mmol), DCC (590 mg, 2.86 mmol), and N-

hydroxysuccinimide (430 mg, 3.78 mmol) were dissolved in anhydrous THF (50 mL) and 

CH3CN (5 mL).  After 8 h at room temperature, the white solid formed was filtered out and the 

filtrate was concentrated in vacuo to give a white foam (1.19 g, 91% yield).  A portion of this 

solid (350 mg, 0.700 mmol) was dissolved in anhydrous DMF (5 mL). NH4OH (42 mg, 27% 
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aqueous solution) was added.  After 12 h at 50 °C, the mixture was poured into brine (50 mL).  

The precipitate was collected by suction filtration, washed with water (2  10 mL), and 

purified with column chromatography over silica gel using CH2Cl2/CH3OH (8/1) as the eluent 

to give a white powder (215 mg, 78% yield). 1H NMR (300 MHz, CDCl3, δ) 7.21 (s, 1H), 6.61 

(s, 1H), 4.31 (d, J = 4.2 Hz, 1H), 4.09 (d, J = 3.6 Hz, 1H), 4.00 (d, J = 3.3 Hz, 1H), 3.76 (s, 1H), 

3.59 (s, 1H), 3.16 (m, 1H), 2.20–0.79 (m, 28H), 0.56 (s, 3H). 

Compound 4.23  Compound 3 (305 mg, 0.763 mmol) was dissolved in anhydrous THF 

(20 mL) under N2.  LiAlH4 (15.2 mL, 0.5 M in diglyme, 7.60 mmol) was added slowly by a 

syringe. The reaction mixture was heated to reflux for 12 h.  A small amount of ethyl acetate 

was added slowly and the solvent was concentrated in vacuo.  The residue was purified by 

column chromatography over silica gel using CH2Cl2/CH3OH (10/1) and CH3OH/Et3N (50/1) 

as the eluent to give a white solid (168 mg, 56% yield).  1H NMR (300 MHz, CD3OD, δ) 4.30 

(d, J = 4.2 Hz, 1H), 4.08 (d, J = 3.3 Hz, 1H), 3.99 (d, J = 3.0 Hz, 1H), 3.59 (s, 1H), 3.38 (s, 1H), 

3.15 (m, 2H), 3.05 (m, 1H), 2.21–0.76 (m, 30H), 0.57 (s, 3H).  

Compound 5.  To a solution of 3,5-dihydroxybenzaldehyde (438 mg, 3.17 mmol) in 

acetone (10 mL) was added anhydrous K2CO3 (2.28 g, 16.5), ethyl bromoacetate (0.92 mL, 8.3 

mmol) and a catalytic amount of NaI.  The mixture was stirred at room temperature overnight. 

It was diluted with water (20 mL) after acetone was removed in vacuo.  The mixture was 

extracted with ethyl acetate (3  50 mL).  The combined organic layers were washed with 

brine, dried over Na2SO4, filtered, and concentrated by rotary evaporation.  The residue was 

purified by column chromatography over silica gel using hexane/ethyl acetate (2/1) as the 

eluent to give 5 as a white solid (869 mg, 88% yield).  1H NMR (300 MHz, CDCl3, δ)  9.88 (s, 

1H), 7.03 (d, J = 2.4 Hz, 2H), 6.78 (t, J = 2.4 Hz, 1H), 4.66 (s, 4H), 4.28 (q, J = 7.2 Hz, 4H), 
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1.31 (t, J = 7.2 Hz, 6H); 13CNMR (75 MHz, CDCl3, δ) 14.3, 61.8, 65.7, 108.7, 108.8, 138.7, 

159.7, 168.4, 191.5. Anal. Calcd for C15H18O7: C, 58.15; H, 5.94. Found:  C, 58.06; H, 5.85. 

EIMS m/z: M+ 310. 

Compound 6.  An oven-dried, three-necked, 3 liter, round-bottomed flask equipped 

with a magnetic stirring bar and a gas-dispersion tube was charged with 5 (2.53g, 8.18 mmol).  

Chloroform (820 mL) distilled over K2CO3 was transferred to the flask through a cannula.  

Pyrrole (0.57 mL, 8.18 mmol) was added by a syringe.  The solution was purged with nitrogen 

for 20 minutes.  Boron trifluoride diethyl etherate (2.5 M solution in CH3Cl, 0.49 mL, 1.23 

mmol, 0.15 equiv.) was added by a syringe and the flask was wrapped with aluminum foil to 

shield it from light.  The solution was stirred under nitrogen at room temperature for 24 h. 

DDQ (1.39 g, 6.12 mmol) was added in one portion.  The mixture was then heated to 65 ˚C for 

another 4 h. After the mixture was cooled to room temperature, and triethylamine (6.5 mL) was 

added.  The reaction mixture was concentrated in vacuo. The residue was purified with column 

chromatography over silica gel using CH2Cl2/ethyl acetate (20/1) as the eluent to give 6 as a 

purple solid (1.19 g, 41% yield).  1H NMR (300 MHz, CDCl3, δ)  8.88 (s, 8H), 7.73 (d, J = 2.1 

Hz, 8H), 6.97 (t, J = 7.2 Hz, 4H), 4.92 (s, 16H), 4.27 (q, J = 7.2 Hz, 16H), –2.95 (s, 2H) ppm. 

Anal. Calcd for C76H78N4O24: C, 63.31; H, 5.83; N, 3.89. Found:  C, 63.77; H, 5.49; N, 3.91. 

EIMS m/z: M+ 1432. UV (CH2Cl2) λmax, nm (ε): 421 (543000), 455 (17200), 514 (20600), 549 

(6000), 588 (6300), 645 (3300). 

H2CFTPP, 2.  To a solution of 6 (180 mg, 0.13 mmol) in THF (40 mL) and MeOH (10 

mL) was added aqueous 1M NaOH (10 mL).  The mixture was stirred at room temperature for 

2 h.  The bottom purple aqueous layer was separated from the top, light yellow, organic layer, 

and was acidified with 1M HCl to pH ≈ 2 while the solution was kept at 0 ˚C.  The green 
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precipitate was collected by centrifugation, washed with water (twice) and MeOH (3 times), 

and dried in vacuo (122 mg, 81%).  A portion of this acid (88 mg, 0.224 mmol), 4 (30 mg, 

0.025 mmol), and benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate 

(BOP, 99 mg, 0.225 mmol) were dissolved in anhydrous DMF (6 mL).  Diisopropylethylamine 

(62 mg, 0.448 mmol) was added by a syringe.  The reaction mixture was stirred at 60 °C for 24 

h under N2 and was poured into brine (50 mL).  The solid was collected by suction filtration, 

washed with water (2  10 mL), and purified by preparative TLC (SiO2, CHCl3/CH3OH = 4/1) 

to give a red powder (51 mg, 48% yield).  1H NMR (300 MHz, CDCl3/CD3OD,  δ)  8.88 (s, 

16H), 8.14 (s, 16H), 7.36 (s, 16H), 7.06 (s, 8H), 4.63 (s, 32H), 4.28 (d, J = 4.2 Hz, 16H), 3.95 

(d, J = 1.8 Hz, 16H), 3.82 (d, J = 0.9 Hz, 16H), 3.56 (br s, 16H), 3.07 (br s, 40H), 2.10 (q, J = 

9.6 Hz, 16H), 1.97 (m, 16H), 1.95–0.55 (m, 232H), 0.37 (m, 16H), 0.05 (s, 24H); 13C NMR  

(75 MHz, CDCl3/CD3OD, δ) 169.2, 157.4, 144.3, 119.5, 115.3, 102.3, 72.7, 71.6, 67.6, 46.6, 

45.9, 41.8, 41.3, 39.6, 39.4, 39.2, 35.4, 35.3, 34.6, 34.5, 33.0, 29.9, 28.2, 27.4, 3.3, 25.9, 22.6, 

22.2, 17.0, 11.6. MALDI-TOFMS: calcd. for C252H375N12O40 [M+H]+: 4212.72; found: 

4206.2.23 UV (CH2Cl2/CH3OH) λmax, nm (ε):  422 (129500), 514 (13200), 548 (6700), 590 

(6200), 646 (4700). 

Zn(CFTPP). Zn(OAc)2•2H2O (6 mg, 0.024 mmol) and 2 (35 mg, 0.0083 mmol) were 

mixed in CH3OH (5 mL).  The mixture was stirred at room temperature for 3 h. Brine (50 mL) 

was added to solution.  The precipitate collected by suction filtration and washed with water 

and CH3CN to give a dark red powder (34 mg, 97 % yield).  1H NMR (300 MHz, 

CDCl3/CD3OD, δ) 8.85 (s, 32H), 8.15 (br s 32H), 7.37 (s, 32H), 7.04 (s, 16H), 4.63 (s, 32H), 

4.28 (d, J = 4.2 Hz, 16H), 4.01 (d, J = 2.1 Hz, 16H), 3.89 (d, J = 1.8 Hz, 16H), 3.69 (s, 16H), 

3.49 (s, 16H), 3.09 (m, 40H), 2.32–0.74 (m, 232H), 0.38 (s, 24H); 13C NMR  (75 MHz, 
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CDCl3/CD3OD, δ) 169.1, 156.8, 149.9, 132.7, 126.8, 117.0, 72.9, 72.9, 71.9, 71.6, 70.3, 68.0, 

67.6, 57.1, 47.0, 46.4, 46.2, 41.8, 41.7, 41.6, 39.7, 39.7, 39.4, 39.2, 35.6, 35.4, 34.9, 34.9, 34.9, 

34.8, 34.5, 33.1, 31.6, 31.5, 30.0, 29.8, 29.7, 28.2, 27.7, 26.6, 26.4, 26.0, 23.1, 23.0, 22.4, 22.3, 

21.1, 21.0, 17.3, 12.2. MALDI-TOFMS: calcd. for C252H372N12O40Zn [M+H]+: 4276.1; found: 

4276.5. UV (CH2Cl2/ CH3OH) λmax, nm (ε): 427 (356100), 557 (26500), 597 (16100), 633 

(16000).  

Compound 7.  Compound 7 was synthesized according to a literature procedure.25  4-

Aminopyridine (520 mg, 4.81 mmol) and δ-gluconolactone (850 mg, 4.80 mmol) were 

dissolved in pyridine (10 mL).  The reaction mixture was heated to reflux for 12 h and was 

poured into CH2Cl2 (100 mL).  The solid was collected by suction filtration and was washed 

with CH2Cl2 (2  20 mL) to give a white powder (1.090 g, 75% yield).  1H NMR (300 MHz, 

CD3OD, δ)  8.44 (dd, J = 4.5 Hz , J = 1.8 Hz, 2H), 8.33 (t, J = 6.3 Hz, 1H), 7.26 (dd, J = 4.5 

Hz , J = 1.5 Hz, 2H), 4.59-4.50 (m, 3H), 4.40–4.22 (m, 3H), 4.09 (dd, J = 5.1 Hz, J = 3.6 Hz, 

1H), 3.96 (m, 1H), 3.60–3.32 (m, 4H). 

Compound 9.  4-Aminopyridine (100 mg, 0.93 mmol), 1-pyrenebutyric acid (266 mg, 

0.92 mmol), and BOP (452 mg, 1.11 mmol) were dissolved in anhydrous DMF (10 mL).  

Diisopropylethylamine (320 mg, 2.30 mmol) was added by a syringe.  The reaction mixture 

was stirred at 50 °C for 12 h and was poured into brine (100 mL).  The solid was collected by 

suction filtration, washed with water (2  20 mL), and purified by column chromatography 

over silica gel using CHCl3/CH3OH (4/1) as the eluent to give a white powder (218 mg, 75% 

yield).  1H NMR (400 MHz, CDCl3, δ)  8.44 (dd, J = 3.3 Hz, J = 1.2 Hz, 2H), 8.25 (d, J = 6.9 

Hz, 1H), 8.14 (d, J = 6.0 Hz, 2H), 8.06 (dd, J = 5.7 Hz, J = 3.3 Hz, 2H), 8.00 (s, 2H), 7.97 (dd, 

J = 6.0 Hz, J = 5.4 Hz, 1H), 7.81 (d, J = 6.0 Hz, 1H), 7.05 (dd, J = 3.3 Hz, J = 1.2 Hz, 2H), 
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5.84 (br s, 1H), 4.36 (d, J = 4.8 Hz, 2H), 3.39 (t, J = 5.4 Hz, 2H), 2.29 (m, 2H), 2.22 (m, 2H). 

13C NMR (75 MHz, CDCl3, δ) 172.7, 149.8, 149.3, 136.9, 131.4, 130.9, 129.8, 128.7, 127.9, 

127.9, 127.7, 127.0, 126.5, 125.4, 125.2, 124.8, 124.7, 123.9, 122.6, 96.0, 41.7, 35.4, 32.8, 28.0. 

MALDI-TOFMS: calcd. for C26H23N2O [M+H]+: 379.5; found: 380.7. 

UV Titrations.  The host was titrated with different amounts of the guest, and 

absorption at the Soret band of complex was monitored.  A typical procedure is as follows. 

Stock solutions of Zn(CFTPP) (0.10 M) and 7 (0.14 M) in CH3OH/CHCl3 (50/50) were 

prepared. CCl4/MeOH (20/80, 3.0 mL) was added to a cuvet, to which an aliquot (2.0 µL) of 

the stock solution of 7 was added via a microsyringe.  The sample was vortexed for 1 min. UV 

absorbance at 433 nm was measured.  The binding constant was determined by nonlinear least-

squares curve fitting of the titration data. 

1H NMR titrations.  A 1H NMR dilution experiment was performed with equimolar 

amounts of Zn(CFTPP) and 7, and the chemical shifts of the pyridyl protons in the guest were 

monitored.  For the binding of 9, Zn(CFTPP) was titrated with different amounts of the guest.  

A typical procedure is as follows. Stock solutions of Zn(CFTPP) (0.010 M) and 9 (0.10 M) in 

CH3OH/CHCl3 (50/50) were prepared.  To 14 separate vials, 12.0 µL of the Zn(CFTPP) stock 

solution was added, followed by 5.0, 7.0, 9.0, 11.0, 14.0, 17.0, 21.0, 25.0, 31.0, 38.0, 48.0, 61.0, 

81.0, and 114.0 µL of the stock solution of 9.  The solvents in each vial were removed in vacuo. 

Then 600 µL of CCl4/CD3OD (20/80) was added to each vial. The samples were gently shaken 

for 1 h and then transferred to 14 separate NMR tubes.  1H NMR spectra were recorded for 

each sample and the chemical shifts of pyridyl protons of the guest were measured.  Binding 

constants were determined by nonlinear least-squares curve fitting of the titration data. 
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CHAPTER 7. High guest inclusion by 3β-amino-7, 12α-
dihydroxycholan-24-oic acid made possible by charge-assisted 

hydrogen bonds 
 

A paper published in Tetrahedron 2006, 62, 6808-6813.1

 

Abstracts 

3β-Amino-7α,12α-dihydroxycholan-24-oic acid (2) formed inclusion compounds with 

high ratio (host/guest = 1/4) of guest methanol.  Both hydrogen bonds and hydrophobic 

interactions were important to the solid structure. The cholates assembled in a head-to-tail 

fashion to form infinite hydrogen-bonded chains.  The chains were interconnected between 

cholates and also through the guests.  Large channels were formed along the crystallographic a 

axis where most of the methanol molecules were located. Presence of a dominant hydrogen 

bonding motif (i.e., ammonium-carboxylate ion pairing) was probably responsible for high 

guest incorporation.  

 

Introduction 

Interesting feature of cholic acid (and bile acids in general) is their ability to form 

inclusion compounds with various organic compounds.2  This is an attractive application 

because bile acids are chiral and can be used for enantiomeric and diastereomeric separation of 

guest molecules.3,4  The number and the orientation of hydrogen bonds greatly influence the 

solid state structures of the bile acids as well as the inclusion compounds that can be formed.  

For example, deoxycholic acid, only different from cholic acid (1) by missing one hydroxyl 

group at C-7, is known for over a hundred years to form inclusion compounds with a wide 
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variety of organic molecules including hydrocarbons, alcohols, ethers, ketones, acids, esters, 

and nitriles.2,5  The ability of cholic acid to form inclusion compounds, however, was 

discovered much later, but received increased attention in recent years.2  Its crystal lattice is 

quite stable and can survive reversible incorporation and removal of guest molecules in some 

cases,6,7 making it potentially useful as “organic zeolite” for separation and chemical reactions.  

In our recent study of cholate derivatives, we synthesized 3β-Amino-7α,12α-

dihydroxycholan-24-oic acid (2) and found it could include guest molecules such as methanol.  

Most interestingly, large void volumes can be formed in the solid structure so that four solvent 

molecules can be incorporated per host molecule.  In contrast, the number of guest molecules in 

preciously reported bile acid inclusion compounds almost never goes above two.  

 

Results and discussion 

Scheme1. Synthesis of compound 2. 
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Reaction conditions: (a) TsCl, pyridine; (b) NaN3, DMPU; (c) PPh3, THF, H2O; (d) LiOH. 

 

Synthesis of 2 was adapted from literature procedures (Scheme 1).8  Cholic acid was 

treated with catalytic amount of sulfuric acid in refluxing methanol to give methyl ester 3.  

Among the three hydroxyl groups, the one at 3α position is most reactive and was selectively 
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tosylated in 84% yield.  Tosylate 4 was replaced by azide through nucleophilic substitution 

with sodium azide in 74% yield.  The azide intermediate 5 was then reduced by 

triphenylphosphine in aqueous THF and was hydrolyzed to give the final product 2 in good 

yields. 

Compound 2 has low solubility in many organic solvents including chloroform, 

tetrahydrofuran (THF), N,N-dimethylformamide (DMF), and even dimethyl sulfoxide 

(DMSO)—the latter two typically dissolve cholate derivatives very easily.  Apparently, charges 

from the ammonium and carboxylate interact more strongly than neutral hydrogen-bonding 

donors and acceptors in most bile acids and give exceptionally high stability to the solid.  It is 

insoluble in water at neutral pH but is soluble under both acidic and basic conditions, 

presumably due to formation of micellar aggregates.  The compound is soluble in hot methanol 

and easily forms large transparent needlelike crystals upon cooling.  

According to single crystal X-ray structure determination one independent molecule of 

2 and four methanol solvent molecules were found in asymmetric unit of orthorhombic cell 

(space group P212121).  The molecule assembles in a head-to-tail fashion with the amine and 

the carboxyl group hydrogen bond to each other (Figure 1).  The α faces of the cholates tilt up 

and down alternately along the chain.  In fact, every other molecule along the chain is 

equivalent and can be converted to one other by translational operation. Similar to other bile 

acids, each repeating unit propagates along the crystallographic c axis in a helical fashion,9 

possibly as a result of the bent backbone caused by the cis-fused A/B rings. Along the a axis, 

the chains are completely parallel.  These chains are bridged by methanols to give pleated 

sheets in this direction.  The chains are zigzagged and antiparallel between neighboring layers.  

Along the crystallographic b axis, the chains are connected by hydrogen bonds between the 

carbonyl oxygen O(24) of one cholate and the hydroxyl group O(7) of another.   
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Figure 1.  Two hydrogen bonded chains of 2 (with methanol molecules) along the 

crystallographic a axis.  Hydrogen bonds are shown in dotted lines.  Hydrogen atoms are 

omitted for clarity. 

 

Amphiphilicity is important in the structure as both hydrophilic and hydrophobic 

portions of the molecules are clearly segregated (Figure 1).  Hydrophobic contact is maintained 

by closely packed methyl groups on the β faces of cholates between neighboring chains.  

Unlike most bile acids,9 however, the hydrophobic layers are discontinuous along the c axis.  

This is the direct result of alternating α and β faces along the chains (which is likely caused by 

strong interactions between the amine and the carboxyl group and the β orientation of the 

amine).  The hydrophobic contact is continuous along the a axis, forming multiple hydrophobic 

“belts” in this direction. Hydrophilic region is located around the amine/carboxyl pair and the 

two hydroxyl groups O(7) and O(12) of another cholate molecule.  

There are four cholates and 16 methanol molecules in one unit cell.  This guest/host 

ratio (4/1) is unusually high for bile acid inclusion compounds.  For example, cholic acid (1) 

only incorporates one or two methanol in its crystal.10–12  Deoxycholic acid does not form 
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inclusion compounds with simple alcohols.  In fact, the guest/host ratio in the majority of bile 

acid inclusion compounds is 1:1 or lower.2  Figure 2 shows the hydrogen-bonding network  

 

Figure 2.  Hydrogen bonding network within the crystal lattice of 2.  Hydrogen atoms and parts 

of cholates A, B, and D are omitted for clarity. O(M1), O(M2), O(M3), and O(M4) are the 

oxygen atoms on the four methanol molecules. 

 

formed by the cholates and methanol.  Not surprisingly, all the polar atoms (i.e., oxygen and 

nitrogen) from both the hosts and the guests are involved in hydrogen bonding.  Each cholate is 

hydrogen bonded to six methanol molecules.  The carboxylate of cholate A is bonded to the 

amine of cholate B and to hydroxyl O(12) of cholate 3 through methanol M1.  The hydroxyl 

O(12) of cholate C is then reconnected back to the amine of cholate 2 through methanol M2.  

Interestingly, two additional methanol molecules (M3 and M4) sit between closely bonded 

amine/carboxylate pairs from cholates A and B.     

Typical hydrogen-bonded O···O distances range from 2.36 to 3.69 Å, with the latter being the 

van der Waals cutoff value.13  Table 1 summarizes the hydrogen bond distances and bond 

angles in the crystal structure. The O···O distance in our structure ranges from 2.65 to 2.79 Å, 

representing medium-strengthed (2.65 to 2.80 Å) hydrogen bonds according to literature  
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Table 1.  Hydrogen bond distances (with H···A distances < 2.5 Å) and angles in the solid 

structure of 2. 

a See Figure 2 for atom numbering. A, B, C, and D are the four labeled cholates. M1, 
M2, M3, and M4 are the four labeled methanol molecules. 

Entry 
Hydrogen 

Bonda

D-H 

(Å) 

H···A 

(Å) 

D···A 

(Å) 

D-H-A 

Bond angle (°) 

1 O(7C)-H···O(24D) 0.84 2.14 2.785(6) 133.4 

2 O(12C)-H···O(M1) 0.84 1.99 2.755(7) 150.9 

3 O(M3)-H···O(M4) 0.84 1.88 2.655(11) 153.6 

4 O(M1)-H···O(24A) 0.84 1.86 2.660(8) 158.5 

5 O(M2)-H···O(12C) 0.84 1.82 2.653(8) 171.0 

6 O(M4)-H···O(25D) 0.84 1.83 2.660(10) 168.2 

7 N(3B)-H···O(M2) 0.91 1.82 2.700(9) 162.5 

8 N(3B)-H···O(25A) 0.91 2.02 2.831(8) 147.6 

9 N(3B)-H···O(M3) 0.91 2.06 2.855(10) 145.5 

 

classification.13,14  Strong hydrogen bonds tend to have linear geometry. Many of the D-H-A 

bond angles, however, are smaller than 160°, possibly because the shape of 2 prevents optimal 

alignment of the donor and the acceptor atoms.  Among all the polar atoms, O(7) is the only 

one that hydrogen-bonds strongly to just one other polar atom—the next closest distance 

between O(7) and another polar atom is 3.30 Å. The O···N distance ranges from 2.70 to 2.86 Å 

(entries 7–9), similar to the values (2.66–3.12 Å with an average of 2.84 Å) found in amino 

acids and peptides.15  

As in most supramolecular systems, the final product formed (crystal structure in this 

case) represents a minimum in either the global or local energy landscape (corresponding to the 

thermodynamically controlled or kinetically trapped structures).  Multiple intermolecular forces 
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have to work together and balance among themselves to reach the best compromise in a crystal 

structure.  In typical bile acid inclusion compounds, the most important interactions are 

hydrogen bonds and hydrophobic interactions.2  Since all hydrogen bonds (O-H···O) are of 

similar nature, no one can dominate in an bile acid that are functionalized only with hydroxy 

and carboxylic acid groups.  Under such a circumstance, the molecules have many ways of 

optimization and can form tightly packed structures fairly easily.  This probably explains why 

bile acid inclusion compounds rarely incorporate more than one or two guest per host even for 

small guests like methanol.  

In the current structure, however, the ammonium-carboxylate is the dominant force.  In 

fact, charge-assisted hydrogen bonds are well know to be stronger than neutral ones14,16–17 and 

are, therefore, generally maintained in the solid state.  Görbitz surveyed 749 amino acid and 

peptides and found the ammonium carboxyl is always maintained despite the presence of many 

other hydrogen-bond donors and acceptors in the structures.15  Aakeröy and co-workers had the 

same observation in a series of substituted benzylammonium benzoate derivatives.18  Presence 

of a dominant force puts a severe constraint on the number of possible ways to optimize the 

structures.  The price of maintaining a particular interaction is to sacrifice other hydrogen 

bonds and/or close packing of the molecules.  Therefore, it should be much easier to 

incorporate a larger number of guests in such a system. 

The crystal structure has channels along the a axis (Figure 3).  These channels are fairly 

hydrophobic except at the corners where the polar atoms are clustered.  They are nearly 

triangular in shape and are fairly large in size: the shorter edge is about 5Å and the longer ones 

roughly 7Å in length.  Three (M1, M3, and M4) of the methanol molecules are located within 

the channels and are connected to the “wall” through hydrogen bonds. All three of them have 

their methyl groups point to the hydrophobic side of the wall. M1 has lower mobility because it 
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is bonded to the wall via two connections (see also Figure 2).  M3 and M4, on the other hand, 

are interconnected to each other and are hydrogen-bonded to the wall only through a one-point 

contact.  As a result, they have the largest thermal motions among all the atoms, presumably 

because they can move up and down easily without significantly changing the hydrogen-

bonding network. The fourth methanol (M2) is located in the hydrophilic region in between the 

carboxyl, amine, and hydroxyl O(7).  It is tightly held in a narrow space, which explains the 

smallest thermal motion observed for this methanol among all the solvents.  

 

Figure 3.  Space filling models of crystal structure of 2 viewed along the crystallographic a 

axis (carbon and hydrogen shown in light gray; oxygen and nitrogen shown in black).  

Methanol molecules are omitted to show the channels.  

 

Conclusions 

Ammonium-carboxylate interaction is maintained in the crystal structure of 3β-amino-

7α,12α-dihydroxycholan-24-oic acid (2).  Combination of a dominant hydrogen-bonding 

interaction with shape awkwardness of the steroid backbone is probably responsible for 

incorporation of an unusually large number of guest molecules in the inclusion compound.  

Such a feature can be very useful in preparing inclusion compounds with high loading 
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capacities.  Another potentially beneficial feature of 2 as a supramolecular host is its low 

solubility in a range of polar and nonpolar solvents.  This could be useful in reversible 

incorporation and release of guest molecules for separation and chemical reactions.3,4  

Bile acid inclusion compounds occupy a unique position in the field of crystal 

engineering.  They have multiple polar groups to stabilize the crystal lattice, facial 

amphiphilicity allowing incorporation of both hydrophilic and hydrophobic guests, chirality for 

enantiomeric and/or diastereomeric selectivity, and awkward shapes to avoid close packing.  

Many systematic modifications on the basic structures have been performed including variation 

on the number and the orientation of hydroxyl groups, on the type of functionality (e.g., acid, 

ester, amide, alcohol) at the C24 carbon, and the length of the carboxy tail.2  In contrast, amino-

derived cholates have received little or no attention in their inclusion abilities.  Since charge-

assisted hydrogen bonds are commonly used to rationally design molecular solids,16–17 amino-

derived bile acids as a group may become highly valuable host compounds for crystal 

engineering. 

 

Experimental Section 

General methods 

Anhydrous tetrahydrofuran (THF) and methylene chloride were dried by passage 

through a column of activated alumina under compressed nitrogen.  Cholic acid was 

crystallized from 95% ethanol and dried at 90 °C under vacuum.  All other reagents and 

solvents were of A.C.S. certified grade or higher, and were used as received from commercial 

suppliers.  All glassware and syringes were dried in an oven at least overnight prior to use.   
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Routine 1H and 13C NMR spectra were recorded on a Varian VXR-300 and VXR-400 

spectrometer.   

 

Synthesis 

Compound 4.  Methyl cholate 3 (3.03 g, 7.17 mmol) was dissolved in anhydrous 

pyridine (20  mL).  Toluenesulfonyl chloride (1.95 g, 10.79 mmol) was added under N2.   The 

reaction mixture was stirred for 4 hr at 50 °C.  Solvent was removed in in vacuo. The residue 

was dissolved in ethyl acetate (50 mL), washed with 2N HCl (50 mL) and water (2  50 mL), 

dried with MgSO4, and concentrated in vacuo to give a white powder (3.58 g, 6.21 mmol, 87 % 

yield).  This material was generally used in the next step without further purification.  1H NMR 

(DMSO-d6, 400 MHz, δ) 7.74 ( d, J=8.4 Hz, 2H), 7.42 (d, J =8.4 Hz, 2H), 4.21 (m, 1H), 3.71 (s, 

1H), 3.52 (s, 3H), 2.58-0.78 (m, 33H), 0.54 (s, 3H).  

Compound 5. Tosylate 4 (3.58 g, 6.21 mmol) and NaN3 (2.16 g, 33.22 mmol) were 

dissolved in N,N´-dimethylpropyleneurea (DMPU, 20 mL).  The reaction mixture was stirred 

for 12 hr at 60 °C. Water (100 mL) was added.  The precipitate was collected by filtration and 

washed with water (2  50 mL).  The residue was purified with column chromatography over 

silica gel using ethyl acetate/hexane (1/4) as the eluent to give a white powder (2.05 g, 4.59 

mmol, 74 % yield).  1H NMR (DMSO-d6, 400 MHz, δ) 3.95 (br s, 1H), 3.73 (br s, 1H), 3.57 (br 

s, 1H), 3.53(s, 3H) 2.58(m, 1H), 2.32-0.73(m, 29H), 0.54 (s, 3H). 

Compound 6. Azide ester 5 (203 mg, 0.459 mmol) and PPh3 (168 mg, 0.641 mmol) 

were dissolved in THF (5 mL) and water (0.3 mL).  The reaction mixture was heated to reflux 

for 12 h. Solvent was removed in vacuo. The residue was purified by column chromatography 

over silica gel using first ethyl acetate/hexane (4/1) and then methanol/triethylamine (50/1) as 
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the eluent to give a white solid (135 mg, 0.321 mmol, 70 % yield).  mp 225-230 °C dec;  1H 

NMR (CD3OD, 400 MHz, δ) 3.94 (br s, 1H), 3.80 (m, 1H), 3.64 (s, 3H), 3.09 (s, 1H), 2.57 (m, 

1H), 2.42-2.11 (m, 3H), 1.96-0.91 (m, 26H), 0.71 (s, 3H). 

Compound 2.  LiOH (2M, 5 ml) was added to the solution of 5 (135 mg, 0.321 mmol) 

in methanol (10 mL).  The mixture was stirred at room temperature for 21 h.  HCl (2N) was 

added until pH = 7-8.  Solvent was removed in in vacuo. Residue was purified by column 

chromatography using MeOH/triethylamine (50/1) as the eluent to give a white solid (121 mg, 

0.298 mmol, 93 % yield).25  mp 240-245 °C dec;  1H NMR (CD3OD/D2O = 1:1, 400 MHz, δ) 

3.59 (s, 1H), 3.26 (s, 1H), 2.00-0.75 (m, 30H), 0.52 (s, 3H). 

 

X-ray crystallography 

A colorless small solvent dependent crystal (0.25  0.18  0.13 mm3) was covered 

with epoxy glue and immediately mounted and centered in the stream of cold nitrogen.  The 

crystal evaluation and data collection were performed on a Bruker CCD-1000 diffractometer at 

193 K, Mo Kα (λ = 0.71073 Å) radiation, detector to crystal distance of 5.03 cm.  The data 

were collected using the full sphere routine (0.3º scans in ω, 30 sec per frame).  This dataset 

was corrected for Lorentz and polarization effects.  The absorption correction was based on 

fitting a function to the empirical transmission surface as sampled by multiple equivalent 

measurements19 using SADABS software.20  The structure was solved using direct methods was 

refined in full-matrix anisotropic approximation for all non-hydrogen atoms.  All hydrogen 

atoms were placed in the structure factor calculation at idealized positions and were allowed to 

ride on the neighboring atoms with relative isotropic displacement coefficients.  
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The crystals of 2 are orthorhombic, C24H41NO4  4(CH4O), space group P212121; at 

193(2) K, a = 7.606(2), b = 13.516(4), c = 29.156(8) Å, V = 2997.2(14) Å3, Z = 4, M = 535.75, 

Dcalc = 1.187 Mg/m3, µ = 0.085 mm-1, F(000) = 1184.ion, R1 = 0.0814, wR2 = 0.2189 

(data/parameters = 2819/348), GOF = 1.085. 

Crystallographic data (excluding structure factors) for the structures in this paper have 

been deposited with the Cambridge Crystallographic Data Centre as supplementary publication 

numbers CCDC 600390 Copies of the data can be obtained, free of charge, on application to 

CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44-(0)1223-336033 or e-

mail:deposit@ccdc.cam.ac.uk].  
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CHAPTER 8. Efficient synthesis of water-soluble calixarenes 
using click chemistry 

 
A paper published in Organic Letters 2005, 7, 1035-1037.1

 

Abstracts 

Several water-soluble calix[4]arenes were synthesized via Huisgen 1,3-dipolar 

cycloaddition between azides and alkynes.  Cationic, anionic, and nonionic calixarenes were 

prepared from a common azidocalixarene intermediate.  Azidocalixarenes performed better 

than alkynylcalixarenes as precursors.  The aggregation behavior of the water-soluble 

calixarenes was studied by 1H NMR spectroscopy.  

 

Introduction 

Calixarenes are among the most versatile and useful building-blocks in supramolecular 

chemistry.2  Water-soluble calixarenes have attracted a considerable attention very early on 

because their well formed hydrophobic cavities make it possible to study molecular recognition 

in water.  Water-soluble groups such as sulfonates,3 carboxylic acids,4 amines,5 and 

phosphonates6 have been introduced through various reactions.  More recently, calixarenes 

become attractive multivalent scaffolds for making amphiphiles useful in both biological7,8 and 

chemical applications.9  

However, synthesis of multivalent water-soluble calixarenes represents a considerable 

challenge.10  Certain reaction conditions (e.g., sulfonation) have a poor functional group 

compatibility.  If the reaction does not give a high conversion, the separation of the (highly 

polar) persubstituted products from incompletely substituted ones is difficult.  Because many of 
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the biological and chemical applications mentioned above are influenced by the charge 

characteristics of water-soluble calixarenes, it is highly desirable to have a modular synthesis 

that can introduce a variety of water-soluble groups without using protective/deprotective 

chemistry.  

“Click chemistry”11 seems to be particularly suitable for attaching water-soluble groups. 

Click reactions are modular, tolerant of wide range of solvents and functional groups, simple to 

perform, and very high yielding.  Click reactions have already been used successfully to 

prepare enzyme inhibitors in situ,14 to functionalize surfaces,15 and to synthesize dendritic 

polymers.16  In this communication, we report the preparation of water-soluble calixarenes 

using the Huisgen 1,3-dipolar cycloaddition of an azide and an alkyne to form a triazole,15 one 

of the most efficient click reactions to date.16

 

Results and discussion 

To attach water-soluble groups via the cycloaddition, we can potentially employ 

calixarenes functionalized with either alkynes or azido groups (Scheme 1).  We first attempted 

the synthesis of 3 because its precursor 2 could be prepared in one step from commercially 

available tert-butylcalix[4]arene 1.  However, no reaction occurred at room temperature but 

complex mixtures formed at 60 °C.17

We then explored the second route using azidocalixarene 4 and water-soluble alkynes 

(5a-c).  Reactions proceeded very smoothly under similar conditions.  One distinctive 

advantage of this route is that the alkyne-coupling side reaction18 at most would consume some 

of 5 but otherwise cause no harm to the calixarene precursor 4.  Another advantage is in the 

preparation of the water-soluble alkynes 5a-c, which could be synthesized from readily 
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available starting materials in high yields and stored in a freezer indefinitely.18  High stability is 

particularly important from the standpoint of safety, because potentially explosive, small 

organic azides have to be used in the other route involving alkynylcalixarenes.19

 

Scheme 1. Preparation of water-soluble calix[4]arenes 
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Reagent condition; (a) propargyl bromide, NaH (b) CuSO4, sodium ascorbate (c) ethyl 

bromoacetate, K2CO3 (d) LiAlH4 (e) MsCl, Et3N (f) NaN3

 

In general, the coupling reaction between 4 and 5 was complete within 24 h at 60 °C in 

THF/EtOH/H2O (1/2/2).  Calixarene 6a was purified by simple precipitation into acetone and 

6b/6c purified by reverse-phase column chromatography with aqueous methanol as eluent.  The 
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isolated yield in general was about 80%. We also performed the reactions using copper (I) 

iodide as the catalyst in the presence of organic bases such as triisopropylethylamine, but the 

reactions were not as clean. 

Solubility of the resulting calixarene (6a-c) varied greatly.  The nonionic 6a, to our 

surprise, was not soluble at all in water.20  Anionic calixarene 6b was soluble in water but 

insoluble in methanol, acetone, acetonitrile, and tetrahydrofuran.  Cationic 6c had solubility 

properties quite similar to 6b in most solvents except methanol, in which it was quite soluble.  

Calixarenes 6b and 6c were soluble in water probably because of micelle formation.  To 

study their aggregation behavior, we recorded their 1H NMR spectra at different concentrations 

in D2O (figure 2 and 3).  This method requires minimal amount of material and has been used 

previously in the characterization of similar water-soluble calixarenes.21 

When the concentration of anionic 6b was increased from 0.5 mM to 4.5 mM, the chemical 

shifts of several hydrogens changed significantly.  The largest change in the chemical shift was 

observed for the endo methylene bridge (ArCH2Ar) hydrogens.  Significant changes were 

observed above 1 mM (Figure 4a).  The signals also became substantially broader above this 

concentration.  Analysis of the line widths (Figure 4b) gave the same critical micelle 

concentration (CMC) of 1 mM.  The CMC of the cationic calixarene 6c was also about 1 mM 

(see Figure 4a and b, data shown in ■).  This is not a surprise because, other than carrying 

opposite charges, the trimethylammonium and sulfonate head groups are quite similar.  
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Figure 2.  1H NMR spectra of 6b at different concentrations in D2O at 20°C. 
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Figure 3.  1 H NMR spectra of 6c at different concentrations in D2O at 20°C. 
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Figure 4.  1H NMR data for 6b ( ) and 6c (■) as a function of concentration of the calixarene 

in D2O.  (a) Chemical shift of the endo ArCH2Ar hydrogens, and (b) line width of the phenyl 

hydrogen signal vs. concentration. 

 

Conclusions 

In summary, we have applied click chemistry to the synthesis of water-soluble 

calixarenes.  Because of possible side reactions between the alkynes, couplings between 

nonpolar azides and water-soluble alkynes gave much better results than those between 

nonpolar alkynes and water-soluble azides.  The highly selective nature of the alkyne-azide 

cycloaddition should make this click reaction a general way to introduce polar groups without 

protective/deprotective chemistry.     

Experimental Section 

General methods 

Anhydrous tetrahydrofuan (THF), CH2Cl2, and ethyl ether were dried by passage 

through a column of activated alumina under compressed nitrogen.  All other reagents and 
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solvents were of A. C. S. certified grade or higher, and were used as received from commercial 

suppliers.  All glassware and syringes were dried in an oven at least overnight prior to use.   

Routine 1H and 13C NMR spectra were recorded on Varian VXR-300, VXR-400, and Bruker 

DRX-400 spectrometer.  MALDI-TOF mass was recorded on a Thermobioanalysis Dynamo 

mass spectrometer. 

 

Synthesis 

Compound 2.22  t-Butylcalix[4]arene (5.01 g, 7.7 mmmol) was dissolved in anhydrous 

THF (400 mL) and DMF (20 mL).  Under N2, propagyl bromide (5.95 mg, 50.1 mmol) was 

added by a syringe.  NaH (1.6 g, 39.3 mmol) was added under a N2 flush and the mixture was 

stirred at 60 °C for 12 h.  Solvent was evaporated in vacuo.  CHCl3 (100 mL) was added and 

2N HCl solution was slowly added to reaction mixture until the pH = 3.  It was extracted with 

CHCl3 (2 x 50 mL).  The organic phase was washed with brine (2 x 20 mL), dried with MgSO4, 

and concentrated in vacuo.  The residue was purified by column chromatography using 

benzene/hexane (1/1) as the eluent to give a white solid (4.04 g, 65% yield).  1H NMR (CDCl3, 

300 MHz, δ) 6.78 (s, 8H), 4.79 (s, 8H), 4.60 (d, J = 12.8 Hz, 4H), 3.16 (d, J = 12.8 Hz, 4H), 

2.48 (s, 4H), 1.08 (s, 36H). 

Compound 7.23  t-Butylcalix[4]arene (5.02 g, 7.7 mmol), ethyl bromoacetate (12.8 g, 

77 mmol), and K2CO3 (10.6 g, 77 mmol) were combined with dry acetone (100 mL).  The 

reaction mixture was heated to reflux for 5 days.  After the mixture was cooled to room 

temperature, the solid was filtered and washed with acetone (10 mL).  The combined organic 

solution was concentrated in vacuo.  The oily residue was crystallized from ethanol to give a 

white powder (5.84 g, 76% yield).  1H NMR (CDCl3, 300 MHz, δ) 6.77 (s, 8H), 4.85 (d, J = 
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12.6 Hz, 4H), 4.80 (s, 8H), 4.21 (q, J = 7.2 Hz, 8H), 3.19 (d, J = 12.6 Hz, 4H), 1.29 (t, J = 7.2 

Hz, 12H), 1.07 (s, 36H). 

Compound 8.24  Compound 7 (3.01 g, 3.02 mmol) was dissolved in anhydrous ethyl 

ether (100 mL) and cooled with an ice bath.  Lithium aluminum hydride (1.00 g, 26.35 mmol) 

was added slowly over 5 min.  The reaction mixture was heated to reflux for 6 h.  Hydrochloric 

acid (2N) was added slowly until pH = 3 and the organic layer was separated.  The organic 

layer was washed with 2N HCl (20 mL), brine (100 mL), and then dried with MgSO4.  Solvent 

was evaporated in vacuo.  The residue was triturated with hot hexane to give a white powder 

(1.74 g, 70% yield).  1H NMR (CDCl3, 300 MHz, δ) 6.85 (s, 8H), 4.35 (d, J = 12.8 Hz, 4H), 

4.00 (t, J = 1.6 Hz, 8H), 3.48 (t, J = 1.6 Hz, 8H), 3.23 (d, J = 12.8 Hz, 4H), 1.08 (s, 36H). 

Compound 9.5  Compound 8 (2.50 g, 3.00 mmol) and triethylamine (1.50 g, 15.15 

mmol) were dissolved in anhydrous CH2Cl2 (50 mL).  The mixture was cooled with an ice bath.  

Methanesulfonyl chloride (1.76 g, 15.15 mmol) was added by a syringe.  The mixture was 

stirred for 6 h at room temperature.  The organic layer (diluted with 50 mL of CH2Cl2) was 

washed with brine (50 mL), dried with MgSO4, and concentrated in vacuo.  The residue was 

purified by column chromatography using CH2Cl2/methanol (8/1) as the eluent to give a white 

solid (1.36 g, 40% yield).  1H NMR (CDCl3, 300 MHz, δ) 6.80 (s, 8H), 4.71 (t, J = 5.4 Hz, 8H), 

4.35 (d, J = 12.6 Hz, 4H), 3.21 (d, J = 12.6 Hz, 4H), 3.21 (s, 12H), 1.07 (s, 36H). 

Compound 4.25  A mixture of compound 9 (298 mg, 0.264 mmol) and NaN3 (687 mg, 

10.56 mmol) in N, N′-dimethylpropyleneurea (DMPU, 10 mL) was stirred at 60 oC for 12 h.  

Water (20 mL) was added.  The precipitate was collected by filtration and washed with water 

(2 x 2 mL).  The product was purified by column chromatography using CHCl3/acetone (15/1) 

as the eluent to give a white powder (171 mg, 70 % yield).  1H NMR (CDCl3, 300 MHz, 
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δ) 6.80 (s, 8H), 4.35 (d, J = 12.6 Hz, 4H), 4.06 (t, J = 6.0 Hz, 8H), 3.87 (t, J = 6.0 Hz, 8H), 3.20 

(d, J = 12.6 Hz, 4H), 1.08 (s, 36H). 

Compound 5a.26  Compound 5a was synthesized according to a modified literature 

procedure.27  δ-Gluconolactone (2.339 g, 13.1 mmol), propargylamine (4.0 mL, 62.5 mmol) 

were dissolved in pyridine (5 mL).  The mixture was stirred at room temperature for 18 h.  The 

mixture was poured into ether (80 mL).  The white solid was collected by suction filtration, 

washed with ether (10 mL), and pumped dry (2.958 g, 97% yield).  1H NMR (300 MHz, 

DMSO-d6, δ) 8.00 (t, J = 5.7 Hz, 1H), 5.40 (d, J = 5.2 Hz, 1H), 4.54-3.36 (m, 12H), 3.02 (t, J = 

2.5 Hz, 1H);  13C NMR (DMSO-d6, 75 MHz, δ): 173.07, 82.02, 74.21, 73.26, 72.97, 72.18, 

70.74, 64.00, 28.441. 

Compound 5b.  Propargyl bromide (2.0 mL in toluene, 80%, 18.0 mmol) and sodium 

sulfite (2.86 g, 22.7 mmol) were dissolved in a mixture of water (7 mL) and methanol (7 mL).  

The mixture was stirred at 65 °C for 7 h.  MeOH (120 mL) was added and the precipitate was 

filtered off.  The filtrate was concentrated in vacuo to about 5 mL.  It was diluted with acetone 

(100 mL) to give a white precipitate. (2.357 g, 92%).  1H NMR (300 MHz, D2O, δ) 3.69 (d, J = 

2.7 Hz, 2H), 2.56 (t, J =2.7 Hz, 1H). 

Compound 5c.  Propargyl bromide (0.8 mL in toluene, 80%, 7.2 mmol) was dissolved 

in acetone (5 mL).  Trimethylamine (2.0 mL, 50% aqueous solution, 14.5 mmol) was added.  A 

brown aqueous layer quickly separated.  The top acetone layer was removed.  The bottom layer 

was washed with acetone (2 x 5 mL).  The aqueous solution was mixed in acetonitrile (15 mL).  

The mixture was added to acetone (100 mL) to give a white powdery precipitate.  (1.027 g, 

80%).  1H NMR (300 MHz, D2O, δ) 4.11 (s, 2H), 3.07 (s, 9H). 
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Compound 6a.  A mixture of 4 (50.8 mg, 0.055 mmol), 5a (64.4 mg,  0.276 mmol), 

CuSO4•5H2O (2.3 mg, 0.0092 mmol), and sodium ascorbate (13.7 mg, 0.069 mmol) were 

mixed with 2 mL of THF/EtOH/H2O (1/2/2).  The mixture was stirred at 60 oC for 24 h under 

N2.  The mixture was combined with hot EtOH/water (10 mL), filtered to remove insoluble 

impurities, and precipitated into acetone (60 mL) to give a greenish powder. (51.9 mg, 51%).  

1H NMR (300 MHz, DMSO-d6, δ) 8.10 (t, J = 5.8 Hz, 4H), 7.98 (s, 4H), 6.77 (s, 8H), 5.47 (d, 

J = 4.4 Hz, 4H), 4.90-3.25 (m, 68H), 3.04 (d, J = 12.3 Hz, 4H), 1.01 (s, 36 H);  13C NMR (75 

MHz, DMSO-d6, δ) 173.34, 152.77, 145.87, 145.09, 133.66, 125.66, 123.73, 74.37, 73.02, 

72.16, 70.77, 63.95, 50.00, 34.802, 34.23, 31.78.  ESI-MS: calcd. for C88H128N16O28 [M + 2 

Na+] m/z = 952.0; found, 952.           

Compound 6b.  A mixture of 4 (50.2 mg, 0.054 mmol), 5b (35.7 mg, 0.226 mmol), 

CuSO4•5H2O (5.0 mg, 0.02 mmol), and sodium ascorbate (48.1 mg, 0.243 mmol) were mixed 

with 3 mL of THF/EtOH/H2O (1/2/2).  The mixture was stirred at 60 oC for 24 h under N2.  

Acetone (10 mL) was added to the cooled reaction mixture.  The yellow precipitate was 

collected by filtration and washed with acetone (2 x 5 mL).  The solid was dissolved in water (5 

mL) and the insoluble impurities were filtered off.  The filtrate was lyophilized.  The product 

was purified by reverse-phase column chromatography over C18 silica gel using H2O/CH3OH 

(80/20 to 50/50) as the eluent to give a light yellow powder (64.0 mg, 79 % yield).  1H NMR 

(300 MHz, D2O, δ) 7.82 (s, 4H), 6.68 (s, 4H), 4.69 (t, J = 5.2 Hz, 8H), 4.23 (t, J = 5.2 Hz, 8H), 

4.06 (s, 8H), 3.68 (d, J = 12.8 Hz, 4H), 2.91 (d, J = 12.8 Hz, 4H), 0.86 (s, 36H);  13C NMR (75 

MHz, D2O/MeOH-d4, δ) 152.13, 145.45, 139.70, 133.37, 125.23, 125.08, 71.82, 50.53, 33.49, 

30.72, 30.25;  ESI-MS: calcd. for C64H80N12O16Na4S4 [M4-+2H+] m/z = 701.8; found, 702; 

calcd. for [M4-+H+] m/z = 467.5; found, 467; calcd. for [M4-] m/z = 350.4; found, 350. 
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Compound 6c.  A mixture of 4 (50.1 mg, 0.054 mmol), 5c (40.2 mg, 0.226 mmol), 

CuSO4•5H2O (5.0 mg, 0.02 mmol), and sodium ascorbate (48.1 mg, 0.243 mmol) were mixed 

with 3 mL of THF/EtOH/H2O (1/2/2).  The mixture was stirred at 60 oC for 24 h under N2.  

Acetone (10 mL) was added to the cooled reaction mixture.  The yellow precipitate was 

collected by filtration and washed with acetone (2 x 5 mL).  The solid was dissolved in water (5 

mL) and the insoluble impurities were filtered off.  The filtrate was lyophilized.  The product 

was purified by reverse-phase column chromatography over C18 silica gel using H2O/CH3OH 

(80/20 to 50/50) as the eluent to give a light yellow powder (69.0 mg, 78 % yield).  1H NMR 

(300 MHz, D2O, δ) 8.32 (s, 4H), 6.68 (s, 8H), 4.89 (t, J = 5.2 Hz, 8H), 4.47 (s, 8H), 4.26 (t, J = 

5.2 Hz, 8H), 3.65 (d, J = 12.8 Hz, 4H), 2.93 (s, 36H), 2.89 (d, J = 12.8 Hz, 4H), 0.84 (s, 36H);  

13C NMR (75 MHz, MeOH-d4, δ): 152.53, 145.79, 136.00, 133.32, 128.78, 125.56, 72.45, 

60.03, 52.38, 47.83, 50.64, 33.69, 30.74, 30.72.  ESI-MS: calcd. for C76H116N16O4Br4 

[M4++2Br-] m/z = 738.8; found, 739; calcd. for [M4++Br-] m/z = 465.9; found, 466; calcd. for 

[M4+] m/z = 329.5; found, 329. 

CMC measurement  

A typical procedure for the CMC measurement is as follows.28  A stock solution (1.95 

mM) of 6c was prepared in D2O.  In 11 separate vials, 490, 440, 390, 340, 290, 250, 200, 150, 

100, and 50 µL of the stock solution were added.  The total volume of the solution was 

increased to 600 µL by adding appropriate amounts of D2O.  The vials were swirled gently to 

avoid foam formation.  The samples were carefully transferred to 11 NMR tubes and the 1H 

NMR spectra were recorded.  The CMC was obtained by plotting the change of chemical shift 

of protons on the calixarene as a function of concentration. 
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